A novel cyclic RGD-containing peptide polymer improves serum-free adhesion of adipose tissue-derived mesenchymal stem cells to bone implant surfaces

  • Péter Tátrai
  • Bernadett Sági
  • Anna Szigeti
  • Áron Szepesi
  • Ildikó Szabó
  • Szilvia Bősze
  • Zoltán Kristóf
  • Károly Markó
  • Gergely Szakács
  • István Urbán
  • Gábor Mező
  • Ferenc Uher
  • Katalin Német


Seeding of bone implants with mesenchymal stem cells (MSCs) may promote osseointegration and bone regeneration. However, implant material surfaces, such as titanium or bovine bone mineral, fail to support rapid and efficient attachment of MSCs, especially under serum-free conditions that may be desirable when human applications or tightly controlled experiments are envisioned. Here we demonstrate that a branched poly[Lys(Seri-DL-Alam)] polymer functionalized with cyclic arginyl-glycyl-aspartate, when immobilized by simple adsorption to tissue culture plastic, surgical titanium alloy (Ti6Al4V), or Bio-Oss® bovine bone substitute, significantly accelerates serum-free adhesion and enhances seeding efficiency of human adipose tissue-derived MSCs. Moreover, when exposed to serum-containing osteogenic medium, MSCs survived and differentiated on the peptide-coated scaffolds. In summary, the presented novel polypeptide conjugate can be conveniently used for coating various surfaces, and may find applications whenever quick and efficient seeding of MSCs is required to various scaffolds in the absence of serum.


Tissue Culture Plastic Resazurin Reduction Biomimetic Coating Human Bone Marrow MSCs Bovine Bone Mineral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank all colleagues at the Tissue Regeneration Department of the Twente University for the kind support, as well as Éva Juhász and Balázs Hegedűs for the help with time-lapse microscopy. This work was financially supported by the grants BIO_SURF from the National Office for Research and Technology (NKTH) and TÁMOP-4.2.1-IKUT from the National Development Agency (NFÜ).


  1. 1.
    Morita Y, Yamasaki K, Hattori K. A feasibility study for in vitro evaluation of fixation between prosthesis and bone with bone marrow-derived mesenchymal stem cells. Clin Biomech. (Bristol, Avon) 2010;25:829–34.Google Scholar
  2. 2.
    van den Dolder J, Farber E, Spauwen PH, Jansen JA. Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials. 2003;24:1745–50.CrossRefGoogle Scholar
  3. 3.
    Holtorf HL, Jansen JA, Mikos AG. Ectopic bone formation in rat marrow stromal cell/titanium fiber mesh scaffold constructs: effect of initial cell phenotype. Biomaterials. 2005;26:6208–16.CrossRefGoogle Scholar
  4. 4.
    Zhou W, Han C, Song Y, Yan X, Li D, Chai Z, et al. The performance of bone marrow mesenchymal stem cell-implant complexes prepared by cell sheet engineering techniques. Biomaterials. 2010;31:3212–21.CrossRefGoogle Scholar
  5. 5.
    Mylonas D, Vidal MD, De Kok IJ, Moriarity JD, Cooper LF. Investigation of a thermoplastic polymeric carrier for bone tissue engineering using allogeneic mesenchymal stem cells in granular scaffolds. J Prosthodont. 2007;16:421–30.CrossRefGoogle Scholar
  6. 6.
    Rickert D, Sauerbier S, Nagursky H, Menne D, Vissink A, Raghoebar GM. Maxillary sinus floor elevation with bovine bone mineral combined with either autogenous bone or autogenous stem cells: a prospective randomized clinical trial. Clin Oral Implants Res. 2011;22:251–8.CrossRefGoogle Scholar
  7. 7.
    Choi HJ, Kim JM, Kwon E, Che JH, Lee JI, Cho SR, et al. Establishment of efficacy and safety assessment of human adipose tissue-derived mesenchymal stem cells (hATMSCs) in a nude rat femoral segmental defect model. J Korean Med Sci. 2011;26:482–91.CrossRefGoogle Scholar
  8. 8.
    Levi B, Longaker MT. Concise review: adipose-derived stromal cells for skeletal regenerative medicine. Stem Cells. 2011;29:576–82.CrossRefGoogle Scholar
  9. 9.
    Scherberich A, Müller AM, Schäfer DJ, Banfi A, Martin I. Adipose tissue-derived progenitors for engineering osteogenic and vasculogenic grafts. J Cell Physiol. 2010;225:348–53.CrossRefGoogle Scholar
  10. 10.
    Gastaldi G, Asti A, Scaffino MF, Visai L, Saino E, Cometa AM, et al. Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds. J Biomed Mater Res A. 2010;94:790–9.Google Scholar
  11. 11.
    Marino G, Rosso F, Cafiero G, Tortora C, Moraci M, Barbarisi M, et al. Beta-tricalcium phosphate 3D scaffold promote alone osteogenic differentiation of human adipose stem cells: in vitro study. J Mater Sci Mater Med. 2010;21:353–63.CrossRefGoogle Scholar
  12. 12.
    Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24:4385–415.CrossRefGoogle Scholar
  13. 13.
    Porté-Durrieu MC, Guillemot F, Pallu S, Labrugère C, Brouillaud B, Bareille R, et al. Cyclo-(DfKRG) peptide grafting onto Ti-6Al-4V: physical characterization and interest towards human osteoprogenitor cells adhesion. Biomaterials. 2004;25:4837–46.CrossRefGoogle Scholar
  14. 14.
    Sawyer AA, Weeks DM, Kelpke SS, McCracken MS, Bellis SL. The effect of the addition of a polyglutamate motif to RGD on peptide tethering to hydroxyapatite and the promotion of mesenchymal stem cell adhesion. Biomaterials. 2005;26:7046–56.CrossRefGoogle Scholar
  15. 15.
    Chua PH, Neoh KG, Kang ET, Wang W. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials. 2008;29:1412–21.CrossRefGoogle Scholar
  16. 16.
    Detsch R, Dieser I, Deisinger U, Uhl F, Hamisch S, Ziegler G, et al. Biofunctionalization of dispense-plotted hydroxyapatite scaffolds with peptides: quantification and cellular response. J Biomed Mater Res A. 2010;92:493–503.Google Scholar
  17. 17.
    Markó K, Ligeti M, Mezo G, Mihala N, Kutnyánszky E, Kiss E, et al. A novel synthetic peptide polymer with cyclic RGD motifs supports serum-free attachment of anchorage-dependent cells. Bioconjug Chem. 2008;19:1757–66.CrossRefGoogle Scholar
  18. 18.
    Mező G, Kajtár J, Nagy I, Szekerke M, Hudecz F. Carrier design: synthesis and conformational studies of poly(l-lysine)based branched polypeptides with hydroxyl groups in the side chains. Biopolymers. 1997;42:719–30.CrossRefGoogle Scholar
  19. 19.
    Mező G, de Oliveira E, Krikorian D, Feijlbrief M, Jakab A, Tsikaris V, et al. Synthesis and comparison of antibody recognition of conjugates containing herpes simplex virus type 1 glycoprotein D epitope VII. Bioconjug Chem. 2003;14:1260–9.CrossRefGoogle Scholar
  20. 20.
    Gurrath M, Müller G, Kessler H, Aumailley M, Timpl R. Conformation/activity studies of rationally designed potent anti-adhesive RGD peptides. Eur J Biochem. 1992;210:911–21.CrossRefGoogle Scholar
  21. 21.
    Lavenus S, Pilet P, Guicheux J, Weiss P, Louarn G, Layrolle P. Behaviour of mesenchymal stem cells, fibroblasts and osteoblasts on smooth surfaces. Acta Biomater. 2011;7:1525–34.CrossRefGoogle Scholar
  22. 22.
    Wiedmann-Al-Ahmad M, Gutwald R, Gellrich NC, Hübner U, Schmelzeisen R. Search for ideal biomaterials to cultivate human osteoblast-like cells for reconstructive surgery. J Mater Sci Mater Med. 2005;16:57–66.CrossRefGoogle Scholar
  23. 23.
    Herten M, Rothamel D, Schwarz F, Friesen K, Koegler G, Becker J. Surface- and nonsurface-dependent in vitro effects of bone substitutes on cell viability. Clin Oral Investig. 2009;13:149–55.CrossRefGoogle Scholar
  24. 24.
    Jafarian M, Eslaminejad MB, Khojasteh A, Abbas FM, Dehghan MM, Hassanizadeh R. Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105:e14–24.Google Scholar
  25. 25.
    Yang C, Cheng K, Weng W, Yang C. Immobilization of RGD peptide on HA coating through a chemical bonding approach. J Mater Sci Mater Med. 2009;20:2349–52.CrossRefGoogle Scholar
  26. 26.
    Oya K, Tanaka Y, Saito H, Kurashima K, Nogi K, Tsutsumi H, et al. Calcification by MC3T3-E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG. Biomaterials. 2009;30:1281–6.CrossRefGoogle Scholar
  27. 27.
    Durrieu MC, Pallu S, Guillemot F, Bareille R, Amédée J, Baquey CH, et al. Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion. J Mater Sci Mater Med. 2004;15:779–86.CrossRefGoogle Scholar
  28. 28.
    Hennessy KM, Clem WC, Phipps MC, Sawyer AA, Shaikh FM, Bellis SL. The effect of RGD peptides on osseointegration of hydroxyapatite biomaterials. Biomaterials. 2008;29:3075–83.CrossRefGoogle Scholar
  29. 29.
    Galli D, Benedetti L, Bongio M, Maliardi V, Silvani G, Ceccarelli G, et al. In vitro osteoblastic differentiation of human mesenchymal stem cells and human dental pulp stem cells on poly-l-lysine-treated titanium-6-aluminium-4-vanadium. J Biomed Mater Res A. 2011;97:118–26.Google Scholar
  30. 30.
    Subbiahdoss G, Pidhatika B, Coullerez G, Charnley M, Kuijer R, van der Mei HC, et al. Bacterial biofilm formation versus mammalian cell growth on titanium-based mono- and bi-functional coating. Eur Cell Mater. 2010;19:205–13.Google Scholar
  31. 31.
    Germanier Y, Tosatti S, Broggini N, Textor M, Buser D. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs. Clin Oral Implants Res. 2006;17:251–7.CrossRefGoogle Scholar
  32. 32.
    Schliephake H, Scharnweber D, Dard M, Sewing A, Aref A, Roessler S. Functionalization of dental implant surfaces using adhesion molecules. J Biomed Mater Res B Appl Biomater. 2005;73:88–96.Google Scholar
  33. 33.
    Stadlinger B, Pilling E, Huhle M, Khavkin E, Bierbaum S, Scharnweber D, et al. Suitability of differently designed matrix-based implant surface coatings: an animal study on bone formation. J Biomed Mater Res B Appl Biomater. 2008;87:516–24.Google Scholar
  34. 34.
    Ferris DM, Moodie GD, Dimond PM, Gioranni CW, Ehrlich MG, Valentini RF. RGD-coated titanium implants stimulate increased bone formation in vivo. Biomaterials. 1999;20:2323–31.CrossRefGoogle Scholar
  35. 35.
    Schliephake H, Scharnweber D, Dard M, Rössler S, Sewing A, Meyer J, Hoogestraat D. Effect of RGD peptide coating of titanium implants on periimplant bone formation in the alveolar crest. An experimental pilot study in dogs. Clin Oral Implants Res. 2002;13:312–9.CrossRefGoogle Scholar
  36. 36.
    Elmengaard B, Bechtold JE, Søballe K. In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials. 2005;26:3521–6.CrossRefGoogle Scholar
  37. 37.
    Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W. Coating of titanium implants with collagen: RGD peptide and chondroitin sulfate. Biomaterials. 2006;27:5561–71.CrossRefGoogle Scholar
  38. 38.
    Pallu S, Fricain JC, Bareille R, Bourget C, Dard M, Sewing A, et al. Cyclo-DfKRG peptide modulates in vitro and in vivo behavior of human osteoprogenitor cells on titanium alloys. Acta Biomater. 2009;5:3581–92.CrossRefGoogle Scholar
  39. 39.
    Schneider D, Weber FE, Hämmerle CH, Feloutzis A, Jung RE. Bone regeneration using a synthetic matrix containing enamel matrix derivate. Clin Oral Implants Res. 2011;22:214–22.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Péter Tátrai
    • 1
    • 2
  • Bernadett Sági
    • 3
  • Anna Szigeti
    • 4
  • Áron Szepesi
    • 4
  • Ildikó Szabó
    • 5
  • Szilvia Bősze
    • 5
  • Zoltán Kristóf
    • 6
  • Károly Markó
    • 7
  • Gergely Szakács
    • 1
  • István Urbán
    • 8
  • Gábor Mező
    • 5
  • Ferenc Uher
    • 3
  • Katalin Német
    • 2
    • 4
  1. 1.Research Center for Natural Sciences, Hungarian Academy of SciencesBudapestHungary
  2. 2.Department of Experimental Gene TherapyNational Blood Transfusion ServiceBudapestHungary
  3. 3.Stem Cell LaboratoryNational Blood Transfusion ServiceBudapestHungary
  4. 4.Creative Cell LtdBudapestHungary
  5. 5.Research Group of Peptide Chemistry, Hungarian Academy of SciencesBudapestHungary
  6. 6.Department of Plant AnatomyEötvös Loránd UniversityBudapestHungary
  7. 7.Institute of Experimental Medicine, Hungarian Academy of SciencesBudapestHungary
  8. 8.Department of Restorative DentistryLoma Linda UniversityLoma LindaUSA

Personalised recommendations