Journal of Materials Science: Materials in Medicine

, Volume 23, Issue 11, pp 2727–2738 | Cite as

The influence of plasma technology coupled to chemical grafting on the cell growth compliance of 3D hydroxyapatite scaffolds

  • Laura Russo
  • Stefano Zanini
  • Paolo Giannoni
  • Elena Landi
  • Anna Villa
  • Monica Sandri
  • Claudia Riccardi
  • Rodolfo Quarto
  • Silvia M. Doglia
  • Francesco Nicotra
  • Laura Cipolla


The development of advanced materials with biomimetic features in order to elicit desired biological responses and to guarantee tissue biocompatibility is recently gaining attention for tissue engineering applications. Bioceramics, such as hydroxyapatite-based biomaterials are now used in a number of different applications throughout the body, covering all areas of the skeleton, due to their biological and chemical similarity to the inorganic phases of bones. When bioactive sintered hydroxyapatite (HA) is desired, biomolecular modification of these materials is needed. In the present work, we investigated the influence of plasma surface modification coupled to chemical grafting on the cell growth compliance of HA 3D scaffolds.


Hydroxyapatite Acrylic Acid Porous Scaffold Dansyl Plasma Polymerization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge MIUR, under project FIRB RBPO68JL9, MIUR-Borse per giovani ricercatori indiani FFO2008, and Fondazione Cariplo, grant n° 2008-3175 for financial support.


  1. 1.
    Jones JR. Observing cell response to biomaterials. Mater Today. 2006;9:23–34.CrossRefGoogle Scholar
  2. 2.
    Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnol. 2005;23:47–55.CrossRefGoogle Scholar
  3. 3.
    Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater. 2009;8:457–70.CrossRefGoogle Scholar
  4. 4.
    Roach P, Eglin D, Rohde K, Perry CC. Modern biomaterials: a review-bulk properties and implications of surface modifications. J Mater Sci Mater Med. 2007;18:1263–77.CrossRefGoogle Scholar
  5. 5.
    Dorozhkin SV. Calcium orthophosphates as bioceramics: state of the Art. J Funct Biomater. 2010;1:22–107.CrossRefGoogle Scholar
  6. 6.
    Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.CrossRefGoogle Scholar
  7. 7.
    Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131:324–36.CrossRefGoogle Scholar
  8. 8.
    Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.CrossRefGoogle Scholar
  9. 9.
    Sawyer AA, Weeks DM, Kelpke SS, McCracken MS, Bellis SL. The effect of the addition of a polyglutamate motif to RGD on peptide tethering to hydroxyapatite and the promotion of mesenchymal stem cell adhesion. Biomaterials. 2005;26:7046–56.CrossRefGoogle Scholar
  10. 10.
    Daw R, O’Leary T, Kelly J, Short RD, Cambray-Deakin M, Devlin AJ, Brook IM, Scutt A, Kothari S. Molecular engineering of surface by plasma copolymerization and enhanced cell attachment and spreading. Plasma Polym. 1999;4:113–32.CrossRefGoogle Scholar
  11. 11.
    Zanini S, Ziano R, Riccardi C. Stable Poly(Acrylic Acid) films from acrylic acid/argon plasmas: influence of the mixture composition and the reactor geometry on the thin films chemical structures. Plasma Chem Plasma Process. 2009;29:535–47.CrossRefGoogle Scholar
  12. 12.
    Riccardi C, Roman HE, Ziano R. Attachment of polymer chains on plasma-treated surfaces: experiments and modeling. New J Phys. 2010;12:073008.CrossRefGoogle Scholar
  13. 13.
    Ratner BD, Chilkoti A, Lopez GP Plasma deposition and treatment for biomaterial applications. In: d’Agostino R editor. Plasma deposition, treatment and etching of polymers. San Diego: Academic Press; 1990. p 463–516Google Scholar
  14. 14.
    Garrison MD, Luginbuhl R, Overney RM, Ratner BD. Glow discharge plasma deposited hexafluoropropylene films: surface chemistry and interfacial material properties. Thin Solid Films. 1999;352:13–21.CrossRefGoogle Scholar
  15. 15.
    Wu YJ, Timmons RB, Jen JS, Moloch FE. Non-fouling surfaces produced by gas phase pulsed plasma polymerization of an ultra low molecular weight ethylene oxide containing monomer. Colloid Surf B. 2000;18:235–48.CrossRefGoogle Scholar
  16. 16.
    Gengenbach TR, Chatelier RC, Griesser HJ. Universal correlation of nitrogen 1s and oxygen 1s photoelectron binding energies with chemical composition in nitrogen-containing plasma polymers. Plasma Polym. 1999;4:283–307.CrossRefGoogle Scholar
  17. 17.
    Oye G, Roucoules V, Oates LJ, Cameron AM, Cameron NR, Steel PG, et al. J Phys Chem B. 2003;107:3496–9.CrossRefGoogle Scholar
  18. 18.
    Ryan ME, Hynes AM, Badyal JPS. Pulsed plasma polymerization of maleic anhydride. Chem Mater. 1996;8:37–42.CrossRefGoogle Scholar
  19. 19.
    Tarducci C, Kinmond E, Brewer S, Willis C, Badyal JPS. Epoxide-functionalized solid surfaces. Chem Mater. 2000;12:1884–9.CrossRefGoogle Scholar
  20. 20.
    Hutton SJ, Crowther JM, Badyal JPS. Complexation of fluorosurfactants to functionalized solid surfaces: smart behavior. Chem Mater. 2000;12:2282–6.CrossRefGoogle Scholar
  21. 21.
    Tarducci C, Schofield WCE, Brewer S, Willis C, Badyal JPS. Cyano Funct Solid Surf Chem Mater. 2001;13:1800–3.Google Scholar
  22. 22.
    Friedrich J, Wettmarshausen S, Hennecke M. Haloform plasma modification of polyolefin surfaces. Surf coat Technol. 2009;203:3647–55.CrossRefGoogle Scholar
  23. 23.
    Tarducci C, Schofield WCE, Brewer SA, Willis C, Badyal JPS. Monomolecular functionalization of pulsed plasma deposited poly(2-hydroxyethyl methacrylate) surfaces. Chem Mater. 2002;14:2541–5.CrossRefGoogle Scholar
  24. 24.
    Tarducci C, Brewer SA, Willis C, Badyal JPS. Diels–Alder chemistry at furan ring functionalized solid surfaces. Chem Commun. 2005;3:406–8.CrossRefGoogle Scholar
  25. 25.
    Coulson SR, Woodward IS, Brewer SA, Willis C, Badyal JPS. Plasmachemical functionalization of solid surfaces with low surface energy perfluorocarbon chains. Langmuir. 2000;16:6287–93.CrossRefGoogle Scholar
  26. 26.
    Landi E, Tampieri A, Celotti G, Sprio S. Densification behaviour and mechanisms of synthetic hydroxyapatites. J Eur Ceram Soc. 2000;20:2377–87.CrossRefGoogle Scholar
  27. 27.
    Ivanov VB, Behnisch J, Hollander A, Mehdorn F, Zimmermann H. Determination of functional groups on polymer surfaces using fluorescence labelling. Surf Interface Anal. 1996;24:251–62.CrossRefGoogle Scholar
  28. 28.
    Chen JP, Su CH. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Acta Biomater. 2011;7:234–43.CrossRefGoogle Scholar
  29. 29.
    Guicciardi S, Galassi C, Landi E, Tampieri A. Rheological characteristics of slurry controlling the microstructure and the compressive strength behavior of biomimetic hydroxyapatite. J Mater Res. 2001;16:163–70.CrossRefGoogle Scholar
  30. 30.
    Landi E, Celotti G, Logroscino G, Tampieri A. Carbonated hydroxyapatite as bone substitute. J Eur Ceram Soc. 2003;23:2931–7.CrossRefGoogle Scholar
  31. 31.
    Detomaso L, Gristina R, Senesi GS, D’Agostino R, Favia P. Stable plasma-deposited acrylic acid surfaces for cell culture applications. Biomaterials. 2005;26:3831–41.CrossRefGoogle Scholar
  32. 32.
    Pimentel E. Handbook of growth factors. Boca Raton: CRC Press; 1994.Google Scholar
  33. 33.
    Neises B, Steiglich W. Esterification of carboxylic acids with dicyclohexylcarbodiimide/4 dimethylaminopyridine: tert-butyl ethyl fumarate. Org Synth Collec. 1990;7:93–5.Google Scholar
  34. 34.
    Baeza A, Izquierdo-Barba I, Vallet-Regio M. Biotinylation of silicon-doped hydroxyapatite: a new approach to protein fixation for bone tissue regeneration. Acta Biomater. 2010;6:743–9.CrossRefGoogle Scholar
  35. 35.
    Hoffman H, Resch-Genger U, Mix R. Fluorescence spectroscopic studies on plasma-chemically modified polymer surfaces with fluorophore-labeled functionalities. J Fluoresc. 2006;16:441–8.CrossRefGoogle Scholar
  36. 36.
    Bosques CJ, Tschampel SM, Woods RJ, Imperiali B. Effects of glycosylation on peptide conformation: a synergistic experimental and computational study. J Am Chem Soc. 2004;126:8421–5.CrossRefGoogle Scholar
  37. 37.
    Major LL, Wolucka BA, Naismith JH. Structure and function of GDP-mannose-3′,5′-epimerase: an enzyme which performs three chemical reactions at the same active site. J Am Chem Soc. 2005;127:18309–20.CrossRefGoogle Scholar
  38. 38.
    Lis H, Sharon N. Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev. 1998;98:637–74.CrossRefGoogle Scholar
  39. 39.
    Flitsch SL, Ulijn RV. Sugars tied to the spot. Nature. 2003;421:219–20.CrossRefGoogle Scholar
  40. 40.
    Dove A. The bittersweet promise of glycobiology. Nature Biotechnol. 2001;19:913–7.CrossRefGoogle Scholar
  41. 41.
    Disney MD, Zheng J, Swager TM, Seeberger PH. Visual detection of bacteria with carbohydrate-containing fluorescent polymers. J Am Chem Soc. 2004;126:13343–6.CrossRefGoogle Scholar
  42. 42.
    Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell. 2009;126:855–67.CrossRefGoogle Scholar
  43. 43.
    Esaki K, Yokota S, Egusa S, Okutani Y, Ogawa Y, Kitaoka T, et al. Preparation of lactose-modified cellulose films by a nonaqueous enzymatic reaction and their biofunctional characteristics as a scaffold for cell culture. Biomacromolecules. 2009;10:1265–9.CrossRefGoogle Scholar
  44. 44.
    Acharya C, Hinz B, Kundu SC. The effect of lactose-conjugated silk biomaterials on the development of fibrogenic fibroblast. Biomaterials. 2008;29:4665–75.CrossRefGoogle Scholar
  45. 45.
    Jack KS, Vizcarra TJ, Trau M. Characterization and surface properties of amino-acid-modified carbonate-containing hydroxyapatite particles. Langmuir. 2007;23:12233–42.CrossRefGoogle Scholar
  46. 46.
    Du Y, Linhardt RJ. Recent advances in stereoselective C-glycoside synthesis. Tetrahedron. 1998;54:9913–59.CrossRefGoogle Scholar
  47. 47.
    Cipolla L, Lay L, Nicotra F. New and easy access to C-glycosides of glucosamine and mannosamine. J Org Chem. 1997;62:6678–81.CrossRefGoogle Scholar
  48. 48.
    Franceschi RT, James WM, Zerlauth G. 1-Alpha, 25-dihydroxyvitamin D3 specific regulation of growth, morphology and fibronectin in a human osteosarcoma cell line. J Cell Physiol. 1985;123:401–9.CrossRefGoogle Scholar
  49. 49.
    Ahmed SA, Gogal RM Jr, Walsh JE. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to H3-thymidine incorporation assay. J Immunol Methods. 1994;170:211–24.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Laura Russo
    • 1
  • Stefano Zanini
    • 2
  • Paolo Giannoni
    • 3
  • Elena Landi
    • 4
  • Anna Villa
    • 1
  • Monica Sandri
    • 4
  • Claudia Riccardi
    • 2
  • Rodolfo Quarto
    • 5
  • Silvia M. Doglia
    • 1
  • Francesco Nicotra
    • 1
  • Laura Cipolla
    • 1
  1. 1.Department of Biotechnology and BiosciencesUniversity of Milano-BicoccaMilanItaly
  2. 2.Department of PhysicsUniversity of Milano-BicoccaMilanItaly
  3. 3.Stem Cell LaboratoryAdvanced Biotechnology CenterGenoaItaly
  4. 4.Institute of Science and Technology for CeramicsNational Research CouncilFaenzaItaly
  5. 5.Department of Experimental Medicine (Di.Me.S.)University of GenovaGenoaItaly

Personalised recommendations