Journal of Materials Science: Materials in Medicine

, Volume 23, Issue 9, pp 2267–2279 | Cite as

Hydrogels of collagen/chondroitin sulfate/hyaluronan interpenetrating polymer network for cartilage tissue engineering

  • Yan Guo
  • Tun Yuan
  • Zhanwen Xiao
  • Pingping Tang
  • Yumei Xiao
  • Yujiang Fan
  • Xingdong Zhang


The network structure of a three-dimensional hydrogel scaffold dominates its performance such as mechanical strength, mass transport capacity, degradation rate and subsequent cellular behavior. The hydrogels scaffolds with interpenetrating polymeric network (IPN) structure have an advantage over the individual component gels and could simulate partly the structure of native extracellular matrix of cartilage tissue. In this study, to develop perfect cartilage tissue engineering scaffolds, IPN hydrogels of collagen/chondroitin sulfate/hyaluronan were prepared via two simultaneous processes of collagen self-assembly and cross linking polymerization of chondroitin sulfate-methacrylate (CSMA) and hyaluronic acid-methacrylate. The degradation rate, swelling performance and compressive modulus of IPN hydrogels could be adjusted by varying the degree of methacrylation of CSMA. The results of proliferation and fluorescence staining of rabbit articular chondrocytes in vitro culture demonstrated that the IPN hydrogels possessed good cytocompatibility. Furthermore, the IPN hydrogels could upregulate cartilage-specific gene expression and promote the chondrocytes secreting glycosaminoglycan and collagen II. These results suggested that IPN hydrogels might serve as promising hydrogel scaffolds for cartilage tissue engineering.


Hyaluronic Acid Chondroitin Sulfate Interpenetrate Polymeric Network Methyl Thiazolyl Tetrazolium Cartilage Tissue Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study is financially supported by the Natural Science Foundation of China (51173113), the Major State Basic Research Program of China (2011CB606201) and the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (No.10zxfk20).


  1. 1.
    Lin YC, Tan F, Marra KG, Jan SS, Liu DC. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications. Acta Biomater. 2009;5:2591–600.CrossRefGoogle Scholar
  2. 2.
    Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24:4337–51.CrossRefGoogle Scholar
  3. 3.
    Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002;54:3–12.CrossRefGoogle Scholar
  4. 4.
    Kopecek J. Hydrogel biomaterials: a smart future? Biomaterials. 2007;28:5185–92.CrossRefGoogle Scholar
  5. 5.
    Lin CC, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliv Rev. 2006;58:1379–408.CrossRefGoogle Scholar
  6. 6.
    Degoricija L, Bansal PN, So ntjens SHM, Joshi NS, Takahashi M, Snyder B, et al. Hydrogels for osteochondral repair based on photo crosslinkable carbamate dendrimers. Biomacromolecules. 2008;9:2863–72.CrossRefGoogle Scholar
  7. 7.
    Burdick JA, Chung C, Jia XQ, Randolph MA, Langer R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules. 2005;6:386–91.CrossRefGoogle Scholar
  8. 8.
    Bryant SJ, Anseth KS. The effects of scaffold thickness on tissue engineered cartilage in photo crosslinked poly (ethylene oxide) hydrogels. Biomaterials. 2001;22:619–26.CrossRefGoogle Scholar
  9. 9.
    Tan H, Chu CR, Payne KA, Marra KG. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials. 2009;30:2499–506.CrossRefGoogle Scholar
  10. 10.
    Malafaya PB, Silva GA, Reis RL. Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev. 2007;59:207–33.CrossRefGoogle Scholar
  11. 11.
    Myllyharju J, Kivirikko KI. Collagens and collagen-related diseases. Ann Med. 2001;33:7–21.CrossRefGoogle Scholar
  12. 12.
    Ottani V, Raspanti M, Ruggeri A. Collagen structure and functional implications. Micron. 2001;32:251–60.CrossRefGoogle Scholar
  13. 13.
    Basalo IM, Chahine NO, Kaplun M, Chen FH, Hung CT, Ateshian GA. Chondroitin sulfate reduces the friction coefficient of articular cartilage. J Biomech. 2007;40:1847–54.CrossRefGoogle Scholar
  14. 14.
    Ronca F, Palmieri L, Panicucci P, Ronca G. Anti-inflammatory activity of chondroitin sulfate. Osteoarthr Cartil. 1998;6:14–21.CrossRefGoogle Scholar
  15. 15.
    Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer. 2004;4:528–39.CrossRefGoogle Scholar
  16. 16.
    Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353–64.CrossRefGoogle Scholar
  17. 17.
    Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol. 2008;27:12–21.CrossRefGoogle Scholar
  18. 18.
    Garcia AJ. Get a grip: integrins in cell-biomaterial interactions. Biomaterials. 2005;26:7525–9.CrossRefGoogle Scholar
  19. 19.
    Wakitani S, Kimura T, Hirooka A, Ochi T, Yoneda M, Yasui N, et al. Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg Br. 1989;71:74.Google Scholar
  20. 20.
    Zhang L, Li K, Xiao W, Zheng L, Xiao Y, Fan H, et al. Preparation of collagen-chondroitin sulfate-hyaluronic acid hybrid hydrogel scaffolds and cell compatibility in vitro. Carbohydr Polym. 2011;84:118–25.CrossRefGoogle Scholar
  21. 21.
    Yamaoka H, Asato H, Ogasawara T, Nishizawa S, Takahashi T, Nakatsuka T, et al. Cartilage tissue engineering chondrocytes embedded in using human auricular different hydrogel materials. J Biomed Mater Res A. 2006;78A:1–11.CrossRefGoogle Scholar
  22. 22.
    Wei Seong T, Eng Hin L, Xi-Min G, Chan JKY, Chen Hua Y, Choo AB, et al. Cartilage repair using hyaluronan hydrogel-encapsulated human embryonic stem cell-derived chondrogenic cells. Biomaterials. 2010;31:6968–80.CrossRefGoogle Scholar
  23. 23.
    Segura T, Anderson BC, Chung PH, Webber RE, Shull KR, Shea LD. Cross linked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials. 2005;26:359–71.CrossRefGoogle Scholar
  24. 24.
    Chung C, Burdick JA. Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng Part A. 2009;15:243–54.CrossRefGoogle Scholar
  25. 25.
    Park SH, Park SR, Chung SI, Pai KS, Min BH. Tissue-engineered cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Artif Organs. 2005;29:838–45.CrossRefGoogle Scholar
  26. 26.
    Hu X, Li D, Zhou F, Gao C. Biological hydrogel synthesized from hyaluronic acid, gelatin and chondroitin sulfate by click chemistry. Acta Biomater. 2011;7:1618–26.CrossRefGoogle Scholar
  27. 27.
    Jin R, Teixeira LSM, Dijkstra PJ, van Blitterswijk CA, Karperien M, Feijen J. Enzymatically-cross linked injectable hydrogels based on biomimetic dextran-hyaluronic acid conjugates for cartilage tissue engineering. Biomaterials. 2010;31:3103–13.CrossRefGoogle Scholar
  28. 28.
    Wang LF, Shen SS, Lu SC. Synthesis and characterization of chondroitin sulfate-methacrylate hydrogels. Carbohydr Polym. 2003;52:389–96.CrossRefGoogle Scholar
  29. 29.
    Nettles DL, Vail TP, Morgan MT, Grinstaff MW, Setton LA. Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann Biomed Eng. 2004;32:391–7.CrossRefGoogle Scholar
  30. 30.
    Li Q, Williams CG, Sun DDN, Wang J, Leong K, Elisseeff JH. Photocrosslinkable polysaccharides based on chondroitin sulfate. J Biomed Mater Res A. 2004;68A:28–33.CrossRefGoogle Scholar
  31. 31.
    Smeds KA, Grinstaff MW. Photocrosslinkable polysaccharides for in situ hydrogel formation. J Biomed Mater Res. 2001;54:115–21.CrossRefGoogle Scholar
  32. 32.
    Suri S, Schmidt CE. Photopatterned collagen-hyaluronic acid interpenetrating polymer network hydrogels. Acta Biomater. 2009;5:2385–97.CrossRefGoogle Scholar
  33. 33.
    Zheng L, Fan H, Sun J, Chen X, Wang G, Zhang L, et al. Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: an in vivo study. J Biomed Mater Res A. 2010;93:783–92.Google Scholar
  34. 34.
    Farndale RW, Buttle DJ, Barrett AJ. Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue. Biochim Biophys Acta. 1986;883:173–7.CrossRefGoogle Scholar
  35. 35.
    Kim YJ, Sah RL, Doong JY, Grodzinsky AJ. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal Biochem. 1988;174:168–76.CrossRefGoogle Scholar
  36. 36.
    Lee CH, Singla A, Lee Y. Biomedical applications of collagen. Int J Pharm. 2001;221:1–22.CrossRefGoogle Scholar
  37. 37.
    Liu SQ, Rachel Ee PL, Ke CY, Hedrick JL, Yang YY. Biodegradable poly (ethylene glycol)-peptide hydrogels with well-defined structure and properties for cell delivery. Biomaterials. 2009;30:1453–61.CrossRefGoogle Scholar
  38. 38.
    Park H, Guo X, Temenoff JS, Tabata Y, Caplan AI, Kasper FK, et al. Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules. 2009;10:541–6.CrossRefGoogle Scholar
  39. 39.
    Vickers SM, Gotterbarm T, Spector M. Cross-linking affects cellular condensation and chondrogenesis in type II collagen-GAG scaffolds seeded with bone marrow-derived mesenchymal stem cells. J Orthop Res. 2010;28:1184–92.CrossRefGoogle Scholar
  40. 40.
    Pieper J, Van Wachem P, Van Luyn M, Brouwer L, Hafmans T, Veerkamp J, et al. Attachment of glycosaminoglycans to collagenous matrices modulates the tissue response in rats. Biomaterials. 2000;21:1689–99.CrossRefGoogle Scholar
  41. 41.
    van Susante JLC, Pieper J, Buma P, van Kuppevelt TH, van Beuningen H, van der Kraan PM, et al. Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro. Biomaterials. 2001;22:2359–69.CrossRefGoogle Scholar
  42. 42.
    Yan J, Qi N, Zhang Q. Rabbit articular chondrocytes seeded on collagen-chitosan-GAG scaffold for cartilage tissue engineering in vivo. Artif Cells Blood Substit Biotechnol. 2007;35:333–44.CrossRefGoogle Scholar
  43. 43.
    Tew SR, Li Y, Pothacharoen P, Tweats LM, Hawkins RE, Hardingham TE. Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes. Osteoarthr Cartil. 2005;13:80–9.CrossRefGoogle Scholar
  44. 44.
    Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BHI. Insulin-transferrin-selenium prevent human chondrocyte dedifferentiation and promote the formation of high quality tissue engineered human hyaline cartilage. Eur Cells Mater. 2005;9:58–67.Google Scholar
  45. 45.
    Bahney CS, Hsu C-W, Yoo JU, West JL, Johnstone B. A bioresponsive hydrogel tuned to chondrogenesis of human mesenchymal stem cells. FASEB J. 2011;25:1486–96.CrossRefGoogle Scholar
  46. 46.
    Brittberg M. Cell carriers as the next generation of cell therapy for cartilage repair a review of the matrix-induced autologous chondrocyte implantation procedure. Am J Sports Med. 2010;38:1259–71.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Yan Guo
    • 1
  • Tun Yuan
    • 1
  • Zhanwen Xiao
    • 1
  • Pingping Tang
    • 2
  • Yumei Xiao
    • 1
  • Yujiang Fan
    • 1
  • Xingdong Zhang
    • 1
  1. 1.Engineering Research Center in BiomaterialsSichuan UniversityChengduChina
  2. 2.Southwest University of Science and TechnologyMianyangChina

Personalised recommendations