Journal of Materials Science: Materials in Medicine

, Volume 23, Issue 9, pp 2141–2149 | Cite as

Injectable thermogelling chitosan for the local delivery of bone morphogenetic protein

  • Shaun W. McLaughlin
  • Zhanwu Cui
  • Trevor Starnes
  • Cato T. Laurencin
  • Ho-Man Kan
  • Qian Wu
  • Lakshmi S. Nair


The aim of the present study was to evaluate the in vivo biocompatibility of injectable thermo gelling chitosan–ammonium hydrogen phosphate solution (chitosan–AHP) and its efficacy to deliver recombinant human bone morphogenetic protein-2 (rhBMP-2) in a bioactive form. The thermogel showed a typical foreign body response upon subcutaneous implantation surrounded by a fibrous capsule. Even at 4 and 8 weeks post implantation, significant neutrophil infiltration was observed within the gel. Chitosan–AHP gel retained most of the loaded rhBMP-2 after a small initial release. The bioactivity of the released protein was demonstrated in vitro by the increase in alkaline phosphatase activity of mouse pre osteoblast cells (MC3T3-E1). Histological and micro-computed tomography (μCT) evaluation showed evidence of ectopic bone formation upon 4 μg/mL rhBMP-2 loaded chitosan–AHP injection. The study demonstrated a neutrophil mediated local tissue response to chitosan–AHP gel and its ability to encapsulate and maintain the bioactivity of rhBMP-2.


Chitosan Fibrous Capsule Ectopic Bone Formation Ammonium Hydrogen Phosphate Local Tissue Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors greatly acknowledge the funding from USAMRMI -W81XWH-10-1-0653.


  1. 1.
    Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, et al. Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide and water soluble chitosan co-polymer. Biomaterials. 2004;25:5743–51.CrossRefGoogle Scholar
  2. 2.
    Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M. PEG grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Controlled Release. 2005;103:609–24.CrossRefGoogle Scholar
  3. 3.
    Chung H, Go D, Bae J, Jung I, Lee J, Park K. Synthesis and characterization of Pluronic grafted chitosan copolymer as a novel injectable biomaterial. Curr Appl Phys. 2005;5:485–8.CrossRefGoogle Scholar
  4. 4.
    Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–8.CrossRefGoogle Scholar
  5. 5.
    Nair LS, Starnes T, Ko JW, Laurencin CT. Development of injectable thermogelling chitosan–inorganic phosphate solutions for biomedical applications. Biomacromolecules. 2007;8:3779–85.CrossRefGoogle Scholar
  6. 6.
    Nair LS, Laurencin CT, Tandon M. Injectable hydrogels as biomaterials. In: Basu B, Katti DS, Kumar A, editors, Advanced Materials. Weinheim: Wiley; 2009.Google Scholar
  7. 7.
    Takahashi Y, Yamamoto M, Tabata Y. Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate. Biomaterials. 2005;26:4856–65.CrossRefGoogle Scholar
  8. 8.
    Wang EA, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA. 1990;87:2220–4.CrossRefGoogle Scholar
  9. 9.
    Burks M, Nair LS. Long term effects of bone morphogenic protein based treatments in humans. J Long Term Effects Med Implants. 2010;20:277–93.CrossRefGoogle Scholar
  10. 10.
    Govender S, Csimma C, Genant HK, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002; 84-A: 2123–2134.Google Scholar
  11. 11.
    Shields LB, Raque GH, Glassman SD, Campbell M, Vitaz T, Harpring J, Shields CB. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine. 2006;31:542–7.CrossRefGoogle Scholar
  12. 12.
    Facca S, Ferrand A, Mendoza-Palomares C, Perrin-Schmitt F, Netter P, Mainard D, Liverneaux P, Benkirane-Jessel N. Bone formation induced by growth factors embedded into the nanostructured particles. J Biomed Nanotechnol. 2011;7:482–5.CrossRefGoogle Scholar
  13. 13.
    Crouzier T, Sailhan F, Becquart P, Guillot R, Logeart-Avramoglou D, Picart C. The performance of BMP-2 loaded TCP/HAP porous ceramics with a polyelectrolyte multilayer film coating. Biomaterials. 2011;32:7543–54.CrossRefGoogle Scholar
  14. 14.
    Jeon O, Powell C, Solorio LD, Krebs MD, Alsberg E. Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels. J Control Release. 2011 (in press).Google Scholar
  15. 15.
    Gu Y, Chen L, Yang HL, Luo ZP, Tang TS. Evaluation of an injectable silk fibroin enhanced calcium phosphate cement loaded with human recombinant bone morphogenetic protein-2 in ovine lumbar interbody fusion. J Biomed Mater Res. 2011;97A:177–85.CrossRefGoogle Scholar
  16. 16.
    Stephan SJ, Tholpady SS, Gross B, Petrie-Aronin CE, Botchway EA, Nair LS, Ogle RC, Park SS. Injectable tissue-engineered bone repair of a rat calvarial defect. Laryngoscope. 2010;120:895–901.Google Scholar
  17. 17.
    Haider ZS, Hamdy RC, Tabrizian M. Delivery of recombinant bone morphogenetic proteins for bone regeneration and repair. Part B: delivery systems for BMPs in orthopaedic and craniofacial tissue engineering. Biotechnol Lett. 2009;31:1825–35.CrossRefGoogle Scholar
  18. 18.
    Azab AK, Doviner V, Orkin B, Kleinstern J, Srebnik M, Nissan A, Rubinstein A. Biocompatibility evaluation of cross-linked chitosan hydrogels after subcutaneous and intraperitoneal implantation in the rat. J Biomed Mater Res. 2007;83A:414–22.CrossRefGoogle Scholar
  19. 19.
    Jeon O, et al. Long term delivery enhances in vivo osteogenic efficacy of bone morphogenetic protein-2 compared to short term delivery. Biochem Biophys Res Commun. 2008;369:774–80.CrossRefGoogle Scholar
  20. 20.
    Bessa PC, et al. Silk fibroin microparticles as carriers for delivery of human recombinant bone morphogenetic protein-2: in vitro and in vivo bioactivity. Tissue Eng Part C. 2010;16(5):937–45.CrossRefGoogle Scholar
  21. 21.
    Abarrategi A, Civantos A, Ramos V, Casado JVS, Lopez-Lacomba JL. Chitosan film as rhBMP-2 carrier: delivery properties for bone tissue application. Biomacromolecules. 2008;9:711–8.CrossRefGoogle Scholar
  22. 22.
    Bush JR, Madhu V, Balian G, Laurencin CT, Nair LS. Thermosensitive chitosan as a matrix for the controlled delivery of biologically active molecules for accelerated bone repair. Proceedings of the AIChE meeting; 2007.Google Scholar
  23. 23.
    Lim SM, Song DK, Oh SH, Lee-Yoon DS, Bae EH, Lee JH. In vitro and in vivo degradation behavior of acetylated chitosan porous beads. J Biomater Sci. Polym Edn. 2008;19:453–66.CrossRefGoogle Scholar
  24. 24.
    VandeVord PJ, Mathew HWT, DeSilva SP, Mayton L, Wu B, Wooley PH. Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res. 2002;59:585–90.CrossRefGoogle Scholar
  25. 25.
    Simard P, Galarneau H, Marois S, Rusu D, Hoemann CD, Poubelle PE, El-Gabalawy H, Fernandes MJ. Neutrophils exhibit distinct phenotypes toward chitosans with different degrees of deacetylation: implications for cartilage repair. Arthr Res Ther. 2009;11:R74.CrossRefGoogle Scholar
  26. 26.
    Shannon C, Thull R, von Recum A. Types I and III collagen in the tissue capsules of titanium and stainless-steel implants. J Biomed Mater Res. 1997;34:401–8.CrossRefGoogle Scholar
  27. 27.
    Usami Y, Okamoto Y, Minami S, Matsuhashi A, Kumazawa NH, Tanioka S, Shigemasa Y. Migration of canine neutrophils to chitin and chitosan. J Vetenary Med Sci. 1993;55:739–42.CrossRefGoogle Scholar
  28. 28.
    Kosaka T, Kaneko Y, Nakada Y, Matsuura M, Tanaka S. Effect of chitosan implanation on activation of canine macrophages and polymorphonuclear cells after surgical stress. J Vetenary Med Sci. 1996;58:963–7.CrossRefGoogle Scholar
  29. 29.
    Hoemann CD, Chen G, Marchand C, Tran-Khanh N, Thibault M, Chevrier A, Sun J, Shive MS, Fernandes MJG, Poubelle PE, Centola M, El-Gabalawy H. Scaffold guided subchondral bone repair: implication of neutrophils and alternatively activated arginase-1 + macrophages. Am J Sports Med. 2010;38:1845–56.CrossRefGoogle Scholar
  30. 30.
    Hirano S, Tsuichida H, Nagao N. N-acetylation in chitosan and the rate of its enzymatic hydrolysis. Biomaterials. 1989;10:574–6.CrossRefGoogle Scholar
  31. 31.
    Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Kobayashi H. Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J Control Release. 2007;117:380–6.CrossRefGoogle Scholar
  32. 32.
    Yang HS, La WG, Bhang SH, Jeon JY, Lee JH, Kim BS. Heparin-conjugatged fibrin as an injectable system for sustained delivery of bone morphogenetic protein-2. Tissue Eng Part A. 2010;16:1225–33.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Shaun W. McLaughlin
    • 1
  • Zhanwu Cui
    • 2
  • Trevor Starnes
    • 3
  • Cato T. Laurencin
    • 2
    • 4
  • Ho-Man Kan
    • 2
  • Qian Wu
    • 5
  • Lakshmi S. Nair
    • 2
    • 4
  1. 1.School of MedicineUniversity of Connecticut Health CenterFarmingtonUSA
  2. 2.Department of Orthopeadic Surgery, Institute for Regenerative EngineeringUniversity of Connecticut Health CenterFarmingtonUSA
  3. 3.School of MedicineUniversity of VirginiaCharlottesvilleUSA
  4. 4.Department of Chemical, Materials and Biomolecular Engineering, Biomedical Engineering, Institute of Material ScienceUniversity of ConnecticutStorrsUSA
  5. 5.Department of Pathology and Laboratory MedicineUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations