Advertisement

In vitro and in vivo evaluation of the biocompatibility of a calcium phosphate/poly(lactic-co-glycolic acid) composite

  • A. Gala-García
  • M. B. H. Carneiro
  • G. A. B. Silva
  • L. S. Ferreira
  • L. Q. Vieira
  • M. M. Marques
  • R. D. Sinisterra
  • M. E. Cortes
Article

Abstract

This study assess the effects of bioceramic and poly(lactic-co-glycolic acid) composite (BCP/PLGA) on the viability of cultured macrophages and human dental pulp fibroblasts, and we sought to elucidate the temporal profile of the reaction of pulp capping with a composite of bioceramic of calcium phosphate and biodegradable polymer in the progression of delayed dentine bridge after (30 and 60 days) in vivo. Histological evaluation of inflammatory infiltrate and dentin bridge formation were performed after 30 and 60 days. There was similar progressive fibroblast growth in all groups and the macrophages showed viability. The in vivo study showed that of the three experimental groups: BCP/PLGA composite, BCP and calcium hydroxide (Ca(OH)2) dentin bridging was the most prevalent (90 %) in the BCP/PLGA composite after 30 days, mild to moderate inflammatory response was present throughout the pulp after 30 days. After 60 days was observed dentine bridging in 60 % and necrosis in 40 %, in both groups. The results indicate that understanding BCP/PLGA composite is biocompatible and by the best tissue response as compared to calcium hydroxide in direct pulp capping may be important in the mechanism of delayed dentine bridge after 30 and 60 days.

Keywords

Hard Tissue Calcium Hydroxide Dental Pulp Biphasic Calcium Phosphate Mineral Trioxide Aggregate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Fundação de Amparo a Pesquisa de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento (CAPES and INCT -Nanobiofar/CNPq Brazilian agencies for financial support.

References

  1. 1.
    Olsson H, Petersson K, Rohlin M. Formation of hard tissue barrier after pulp capping in humans: a systematic review. Int Endod J. 2006;39:429–42.CrossRefGoogle Scholar
  2. 2.
    Briso AL, Rahal V, Mestrener SR, Dezan E Jr. Biological response of pulps submitted to different capping materials. Braz Oral Res. 2006;20:219–25.CrossRefGoogle Scholar
  3. 3.
    Seltzer S. Advances in biology of the human dental pulp. Oral Sur Oral Med Oral Pathol. 1971;32:454–60.CrossRefGoogle Scholar
  4. 4.
    Nor JE. Tooth regeneration in operative dentistry. Oper Dent. 2006;31:633–42.CrossRefGoogle Scholar
  5. 5.
    .Minouei H, Meratian M, Fathi M H, Ghazvinizadeh H. Biphasic calcium phosphate coating on cobalt-base surgical alloy during investment casting. J Mater Sci: Mater Med 2011; doi: 10.1007/s10856-011-4433-1.
  6. 6.
    Yin X, Stott MJ, Rubio A. Alpha and beta-tricalcium phosphate: a density functional study. Phys Rev B. 2003;68:205–20.Google Scholar
  7. 7.
    Elahi MM, Vanduzer S, Spears J, Gibson J, Mitra A. Frontal sinus obliteration with beta-tricalcium phosphate. J Craniofac Surg. 2004;15:967–70.CrossRefGoogle Scholar
  8. 8.
    Zhang W, Walboomers XF, Jansen JA. The formation of tertiary dentin after pulp capping with calcium phosphate cement loaded with PLGA microparticles containing TGF-beta1. J Biomed Mater Res A. 2008;85:439–44.Google Scholar
  9. 9.
    Bhatnagar R, Li S. Biomimetic scaffolds for tissue engineering. Conf Proc IEEE Eng Med Biol Soc. 2004;7:5021–3.Google Scholar
  10. 10.
    Thomson RC, Wake MC, Yaszemski MJ, Mikos AG. Biodegradable polymer scaffolds to regenerate organs. Adv Polym Sci. 1995;122:245–74.CrossRefGoogle Scholar
  11. 11.
    Gala-Garcia A, Teixeira KIR, Wykrota FHL, Sinisterra RD, Cortes ME. Bioceramic/poly (glycolic)-poly (lactic acid) composite induces mineralized barrier after direct capping of rat pulp tissue. Braz Oral Res. 2010;24:8–14.CrossRefGoogle Scholar
  12. 12.
    Ural E, Kesenci K, Fambri L, Migliaresi C, Pinski E. Poly (P, lactide/caprolactone)/hydroxyapatite composites. Biomaterials. 2000;21:2147–54.CrossRefGoogle Scholar
  13. 13.
    Hench LL. The challenge of orthopaedic materials. Curr Orthop. 2000;1:7–15.CrossRefGoogle Scholar
  14. 14.
    Mendes GC, Brandão TR, Silva CL. Ethylene oxide sterilization of medical devices: a review. Am J Infect Control. 2007;35:574–81.CrossRefGoogle Scholar
  15. 15.
    Cavalcanti BN, Rode SM, Marques MM. Cytotoxicity of substances leached or dissolved from pulp capping materials. Int Endod J. 2005;38:505–9.CrossRefGoogle Scholar
  16. 16.
    Rezende TMB, Vargas DL, Cardoso FP, Ribeiro Sobrinho AP, Vieira LQ. Effect of mineral trioxide aggregate on cytokine production by peritoneal macrophages. Int Endod J. 2005;38:896–903.CrossRefGoogle Scholar
  17. 17.
    American Society for Testing and Materials: Annual Book of ASTM Standards 1992: Medical Devices. ASTM, West Conshohocken.Google Scholar
  18. 18.
    Gala-García A, Teixeira KIR, Mendes LL, Sobrinho APR, Santos VR, Cortes ME. Effect of aloe vera on rat pulp tissue. Pharm Biol. 2008;46:302–8.CrossRefGoogle Scholar
  19. 19.
    Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials. 2000;21:2347–59.CrossRefGoogle Scholar
  20. 20.
    Legeros RZ, Lin S, Rohanizadeh R, Mijares D, Legeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14:201–9.CrossRefGoogle Scholar
  21. 21.
    Alliot-Licht B, Jean A, Gregoire M. Comparative effect of calcium hydroxide and hydroxyapatite on the cellular activity of human pulp fibroblasts in vitro. Arch Oral Biol. 1994;39:481–9.CrossRefGoogle Scholar
  22. 22.
    Higashi T, Okamoto H. Influence of particle size of hydroxyapatite as a capping agent on cell proliferation of cultured fibroblasts. J Endod. 1996;22:236–9.CrossRefGoogle Scholar
  23. 23.
    Ignjatović N, Ninkov P, Kojić V, Bokurov M, Srdić V, Krnojelac D, Selaković S, Uskoković D. Cytotoxicity and fibroblast properties during in vitro test of biphasic calcium phosphate/poly-dl-lactide-co-glycolide biocomposites and different phosphate materials. Microsc Res Tech. 2006;69:976–82.CrossRefGoogle Scholar
  24. 24.
    Young CS, Terada S, Vacanti JP, Honda M, Bartlett JD, Yelick PC. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res. 2002;81:695–700.CrossRefGoogle Scholar
  25. 25.
    Kim SS, Vacanti JP. The current status of tissue engineering as potential therapy. Semin Pediatr Surg. 1999;8:119–23.Google Scholar
  26. 26.
    Min K, Kim H, Park H, Pi S, Hong Ch, Kim E. Human pulp cells response to Portland cement in vitro. J Endod. 2007;33:163–6.CrossRefGoogle Scholar
  27. 27.
    Shimabukuro Y, Ueda M, Ozasa M, Anzai J, Takedachi M, Yanagita M, Ito M, Hashikawa T, Yamada S, Murakami S. Fibroblast growth factor-2 regulates the cell function of human dental pulp cells. J Endod. 2009;35:1529–35.CrossRefGoogle Scholar
  28. 28.
    Goldberg M, Farges JC, Lacerda-Pinheiro S, Six N, Jegat N, Decup F, Septier D, Carrouel F, Durand S, Chaussain-Miller C, Denbesten P, Veis A, Poliard A. Inflammatory and immunological aspects of dental pulp repair. Pharmacol Res. 2008;58:137–47.CrossRefGoogle Scholar
  29. 29.
    Lu J, Blary MC, Vavasseur S, Descamps M, Anselme K, Hardouin P. Relationship between bioceramics sintering and micro-particles-induced cellular damages. J Mater Sci Mater Med. 2004;15:361–5.CrossRefGoogle Scholar
  30. 30.
    Li J, Liu Y, Hermansson L, Söremark R. Evaluation of biocompatibility of various ceramic powders with human fibroblasts in vitro. Clin Mater. 1993;12:197–201.CrossRefGoogle Scholar
  31. 31.
    Silva SN, Pereira MM, Goes AM, Leite MF. Effect of biphasic calcium phosphate on human macrophage functions in vitro. J Biomed Mater Res B. 2003;65:475–81.CrossRefGoogle Scholar
  32. 32.
    Unanue ER. The regulation of lymphocyte functions by the macrophage. Immunol Rev. 1978;40:227–55.CrossRefGoogle Scholar
  33. 33.
    Kawashima N, Okiji T, Kosaka T, Suda H. Kinetics of macrophages and lymphoid cells during the development of experimentally induced periapical lesions in rat molars: a quantitative immunohistochemical study. J Endod. 1996;22:311–6.CrossRefGoogle Scholar
  34. 34.
    Metzger Z. Macrophages in periapical lesions. Endod Dent Traumatol. 2000;16:1–8.CrossRefGoogle Scholar
  35. 35.
    Borish LC, Steinke JW. Cytokines and chemokines. J Allergy Clin Immunol. 2003;111:460–75.CrossRefGoogle Scholar
  36. 36.
    Oliveira Mendes ST, Ribeiro Sobrinho AP, Carvalho AT, Souza Cortes MI, Vieira LQ In vitro evaluation of the cytotoxicity of two root canal sealers on macrophage activity. J Endod 2003;29:95–99.Google Scholar
  37. 37.
    Zhu Q, Haglund R, Safavi KE, Spangberg LS. Adhesion of human osteoblasts on root-end filling materials. J Endod. 2000;26:404–6.CrossRefGoogle Scholar
  38. 38.
    Alcaide M, Serrano MC, Pagani R, Sánchez-Salcedo S, Nieto A, Vallet-Regí M, Portolés MT. L929 fibroblast and Saos-2 osteoblast response to hydroxyapatite-betaTCP/agarose biomaterial. J Biomed Mater Res A. 2009;89:539–49.Google Scholar
  39. 39.
    Botelho CM, Brooks RA, Best SM, Lopes MA, Santos JD, Rushton N, Bonfield W. Human osteoblast response to silicon-substituted hydroxyapatite. J Biomed Mater Res A. 2006;79:723–30.Google Scholar
  40. 40.
    Legeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108:4742–53.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • A. Gala-García
    • 1
  • M. B. H. Carneiro
    • 2
  • G. A. B. Silva
    • 3
  • L. S. Ferreira
    • 4
  • L. Q. Vieira
    • 2
  • M. M. Marques
    • 4
  • R. D. Sinisterra
    • 5
  • M. E. Cortes
    • 1
  1. 1.Department of Restorative Dentistry, Dentistry FacultyUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Department of Imunology and Biochemistry, Science Biological Institute Universidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  3. 3.Department of Morphology, Science Biological InstituteUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  4. 4.Department of Restorative Dentistry, Dentistry FacultyUniversidade de São Paulo (USP)Belo HorizonteBrazil
  5. 5.Department of Chemistry, Exact Science InstituteUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil

Personalised recommendations