Advertisement

Characterization and photodynamic activity of a new phthalocyanine nanoparticles

  • Rui Lin
  • Lin Zhou
  • Ke-Long Fang
  • Yun Lin
  • Ao Wang
  • Jia-Hong Zhou
  • Shao-Hua Wei
Article

Abstract

Nanoparticles of a hydrophobic photosensitizer, tetrakis (3-trifluoromethylphenoxy) zinc phthalocyanine (FPcZn) have been synthesized by using a simple reprecipitation technique. The resulting drug nanoparticles (FPcZn-NP) were spherical, highly monodispersed and stable in aqueous system, without an additional stabilizer. Comparative studies with FPcZn-NP and FPcZn indicated that after the formation of nanoparticles, FPcZn-NP maintained the efficiency of 1O2 generation. Further more, the in vitro studies demonstrated that such nanoparticles can be efficiently taken up by Hela cells, which might be resulted to cell death by light irradiation. These properties could make the FPcZn-NP to be a promising candidate in clinical photodynamic therapy.

Keywords

HeLa Cell Phthalocyanine Dynamic Light Scattering High Pressure Mercury Lamp Singlet Oxygen Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20973093 and 20673958) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

References

  1. 1.
    Konopka K, Goslinski T. Photodynamic therapy in dentistry. J Dent Res. 2007;86:694–707.CrossRefGoogle Scholar
  2. 2.
    Doi Y, Ikeda A, Akiyama M, Nagano M, Shigematsu T, Ogawa T, et al. Intracellular uptake and photodynamic activity of watersoluble [60]-and [70] fullerenes incorporated in liposomes. Chem Eur J. 2008;14:8892–7.CrossRefGoogle Scholar
  3. 3.
    Calzavara-Pinton PG, Venturini M, Sala R. A comprehensive overview of photodynamic therapy in the treatment of superficial fungal infections of the skin. J Photochem Photobiol B. 2005;78:1–6.CrossRefGoogle Scholar
  4. 4.
    Kato H. Photodynamic therapy for lung cancer-a review of 19 years’ experience. J Photochem Photobiol B. 1998;42:96–9.CrossRefGoogle Scholar
  5. 5.
    Chen YW, Xu SJ, Li L, Zhang MH, Shen JQ, Shen T. Active oxygen generation and photo-oxygenation involving temporfin (m-THPC). Dyes Pigm. 2011;51:63–9.CrossRefGoogle Scholar
  6. 6.
    Liu FX, Zhou XP, Chen ZL, Huang P, Wang XQ, Zhou Y. Preparation of purpurin-18 loaded magnetic nanocarriers in cottonseed oil for photodynamic therapy. Mater Lett. 2008;62:2844–7.CrossRefGoogle Scholar
  7. 7.
    Ali H, Van Lier JE. Metal complexes as photo- and radiosensitizers. Chem Rev. 1999;99:2379–450.CrossRefGoogle Scholar
  8. 8.
    Lukyanets EA. Phthalocyanines as photosensitizers in the photodynamic therapy of cancer. J Porphry Phthalocya. 1999;3:424–32.CrossRefGoogle Scholar
  9. 9.
    Miller JD, Baron ED, Scull H, Hsia A, Berlin JC, Mc Connick T, et al. Photodynamic therapy with the phthalocyanine photosensitizer Pc 4: the case experience with preclinical mechanistic and early clinicaltranslational studies. Toxicol Appl Pharmacol. 2007;224:290–9.CrossRefGoogle Scholar
  10. 10.
    Dincer HA, Koca A, Gul A, Kocak MB. Novel phthalocyanines bearing both quaternizable and bulky substituents. Dyes Pigm. 2008;76:825–31.CrossRefGoogle Scholar
  11. 11.
    Taquet JP, Frochot C, Manneville V, Muriel BH. Phthalocyanine covalently bound to biomolecules for a targeted photodynamic therapy. Curr Med Chem. 2007;14:1673–87.CrossRefGoogle Scholar
  12. 12.
    Aggarwal A, Singh S, Zhang YZ, Anthes M, Samaroo D, Gao RM, et al. Synthesis and photophysics of an octathioglycosylated zinc(II) phthalocyanine. Tetrahedron Lett. 2011;52:5456–9.CrossRefGoogle Scholar
  13. 13.
    Tempesti TC, Alvarez MG, Durantini EN. Synthesis and photodynamic properties of amphiphilic A(3) B-phthalocyanine derivatives bearing N-heterocycles as potential cationic phototherapeutic agents. Dyes Pigm. 2011;91:6–12.CrossRefGoogle Scholar
  14. 14.
    Shen SC, Ng WK, Shi Z, Chia L, Neoh KG, Tan RBH. Mesoporous silica nanoparticle-functionalized poly(methyl methacrylate)-based bone cement for effective antibiotics delivery. J Mater Sci Mater Med. 2011;22:2283–92.CrossRefGoogle Scholar
  15. 15.
    Wieder ME, Hone DC, Cook MJ, Handsley MM, Gavrilovic J, Russell DA. Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a “Trojan horse”. Photochem Photobiol Sci. 2006;5:727–34.CrossRefGoogle Scholar
  16. 16.
    Konan YN, Berton M, Gurny R, Allemann E. Enhanced photodynamic activity of meso-tetra(4-hydroxyphenyl)porphyrin by incorporation into sub-200 nm nanoparticles. Eur J Pharm Sci. 2003;18:241–9.CrossRefGoogle Scholar
  17. 17.
    Roy I, Ohulchanskyy TY, Pudavar HE, Bergey EJ, Oseroff AR, Morgan J, Dougherty TJ, Prasad PN. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc. 2003;125:7860–5.CrossRefGoogle Scholar
  18. 18.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.CrossRefGoogle Scholar
  19. 19.
    Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deli Rev. 2002;54:631–51.CrossRefGoogle Scholar
  20. 20.
    Nitschke C, O’Flaherty SM. Kro1ll M, Blau WJ. Material investigations and optical properties of phthalocyanine nanoparticles. J Phys Chem B. 2004;108:1287–95.CrossRefGoogle Scholar
  21. 21.
    Chen HZ, Chao P, Wang M. Characterization and photoconductivity study of TiOPc nanoscale particles prepared by liquid phase direct reprecipitation. Nanostruct Mater. 1999;11:523–30.CrossRefGoogle Scholar
  22. 22.
    Yang ZL, Chen HZ, Cao L, Wang M. Preparation and photoconductivity study of azo nanoparticles via liquid phase surfactant-assisted reprecipitation. J Mater Sci. 2004;39:3587–91.CrossRefGoogle Scholar
  23. 23.
    Kasai H, Nalwa HS, Oikawa H, Okada S, Matsuda H, Minami N, et al. A novel preparation method of organic microcrystals. Jpn J Appl Phys. 1992;31:1132–4.CrossRefGoogle Scholar
  24. 24.
    Baba K, Pudavar HE, Roy I, Ohulchanskyy TY, Chen YH, Pandey RK, et al. New method for delivering a hydrophobic drug for photodynamic therapy using pure nanocrystal form of the drug. Mol Pharmacol. 2007;4:289–97.CrossRefGoogle Scholar
  25. 25.
    Wei SH, Huang DY, Li L, Meng QH. Synthesis and properties of some novel soluble metallophthalocyanines containing the 3-trifluromethylphenyoxy moiety. Dyes Pigm. 2003;56:1–6.CrossRefGoogle Scholar
  26. 26.
    Zhao YM, Sun LN, Zhou HY, Wang XL. Voltage-dependent potassium channels are involved in glutamate-induced apoptosis of rat hippocampal neurons. Neurosci Lett. 2006;398(1–2):22–7.CrossRefGoogle Scholar
  27. 27.
    Nie Y, Zhang ZR, Li L, Luo K, Ding H, Gu ZW. Synthesis, characterization and transfection of a novel folate-targeted multipolymeric nanoparticles for gene delivery. J Mater Sci Mater Med. 2009;20:1849–57.CrossRefGoogle Scholar
  28. 28.
    Bouquet W, Boterberg T, Ceelen W, Pattyn P, Peeters M, Bracke M, et al. In vitro cytotoxicity of paclitaxel/β-cyclodextrin complexes for HIPEC. Int J Pharm. 2009;367:148–54.CrossRefGoogle Scholar
  29. 29.
    Yuzhakov VI. Aggregation of dye molecules and its effects on spectral-luminescent properties of solution. Russ Chem Rev. 1992;61:1114–41.CrossRefGoogle Scholar
  30. 30.
    Zenkevich E, Sagun E, Knyukshto V, Shulga A, Mironov A, Efremova O, et al. Photophysical and photochemical properties of potential porphyrin and chlorin photosensitizers for PDT. J Photochem Photobilo B Biol. 1996;33:171–80.CrossRefGoogle Scholar
  31. 31.
    Ma LW, Moan J, Berg K. Comparison of the photobleaching effect of 3 photosensitizing agents-meso-tetra (M-hydroxyphenyl) chlorin, meso-tetra (M-hydroxyphenyl) porphyrin and photofrin during photodynamic therapy. Lasers Med Sci. 1994;9:127–32.CrossRefGoogle Scholar
  32. 32.
    Zhang X, Xia Q, Gu N. Preparation of all-trans retinoic acid nanosuspension using a modified precipitation method. Drug Dev Ind Pharm. 2006;32:857–63.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rui Lin
    • 1
  • Lin Zhou
    • 1
  • Ke-Long Fang
    • 1
  • Yun Lin
    • 1
  • Ao Wang
    • 1
  • Jia-Hong Zhou
    • 1
    • 2
  • Shao-Hua Wei
    • 1
  1. 1.Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials ScienceNanjing Normal UniversityNanjingPeople’s Republic of China
  2. 2.Analysis Testing CenterNanjing Normal UniversityNanjingPeople’s Republic of China

Personalised recommendations