Fiber reinforcement of a biomimetic bone cement

  • S. Panzavolta
  • B. Bracci
  • M. L. Focarete
  • C. Gualandi
  • A. Bigi


In this study we investigated the influence of electrospun polymer fibers on the properties of a α-tricalcium phosphate/gelatin biomimetic cement. To this aim, we added different amounts of poly(l-lactic acid) and poly(lactide-co-glycolide) fibers to the cement composition. Fibers enrichment provoked a significant reduction of both initial and final setting times. Moreover electrospun polymer fibers slowed down the conversion of α-tricalcium phosphate into calcium deficient hydroxyapatite. As a result, the final cements were more compact than the control cement, because of the smaller crystal dimensions and reduced crystallinity of the apatitic phase. The compressive strength, σb, and Young’s modulus, E, of the control cement decreased significantly after 40 days soaking in physiological solution, whereas the more compact microstructure enabled fiber reinforced cements to maintain their mechanical properties in the long term.


Gelatin PLLA Physiological Solution Electrospun Fiber DCPD 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was carried out with the financial support of Regione Emilia Romagna (Programma di Ricerca Regione Università, Area 1b ‘Medicina rigenerativa’).


  1. 1.
    Brown WE, Chow LC. A new calcium phosphate setting cement. J Dent Res. 1983;62:672–9.Google Scholar
  2. 2.
    LeGeros RZ, Chohayeb A, Shulman A. Apatitic calcium phosphates: possible dental restorative materials. J Dent Res. 1982;61:343–7.Google Scholar
  3. 3.
    Bohner M. Reactivity of calcium phosphate cements. J Mater Chem. 2007;17:3980–6.CrossRefGoogle Scholar
  4. 4.
    Dorozhkin SV. Calcium orthophosphate cements and concretes. Materials. 2009;2:221–91.CrossRefGoogle Scholar
  5. 5.
    Bigi A, Panzavolta S, Rubini K. Setting mechanism of a biomimetic bone cement. Chem Mater. 2004;16:3740–5.CrossRefGoogle Scholar
  6. 6.
    Schneiders W, Reinstorf A, Pompe W, Grass R, Biewener A, Holch M, Zwipp H, Rammelt S. Effect of modification of hydroxyapatite/collagen composites with sodium citrate, phosphoserine, phosphoserine/RGD-peptide and calcium carbonate on bone remodelling. Bone. 2007;40:1048–59.CrossRefGoogle Scholar
  7. 7.
    Veis A. The macromolecular chemistry of gelatin. New York: Academic Press; 1964. p. 196.Google Scholar
  8. 8.
    Rose PJ, Mark HF, Bikales NM, Overberger CG, Menges G, Kroschwitz JI. Encyclopedia of polymer science and engineering, vol. 7. 2nd ed. New York: Wiley Interscience; 1987.Google Scholar
  9. 9.
    Bigi A, Panzavolta S, Rubini K. Relationship between triple helix content and mechanical properties of gelatin films. Biomaterials. 2004;25:5675–80.CrossRefGoogle Scholar
  10. 10.
    Bigi A, Panzavolta S, Sturba L, Torricelli P, Fini M, Giardino R. Normal and osteopenic bone-derived osteoblast response to a biomimetic gelatin-calcium phosphate bone cement. J Biomed Mater Res. 2006;78A:739–45.CrossRefGoogle Scholar
  11. 11.
    Bracci B, Fini M, Panzavolta S, Torricelli P, Bigi A. In vivo and in vitro response to a gelatin/α-tricalcium phosphate bone cement. Key Eng Mater. 2008;361–363:1001–4.CrossRefGoogle Scholar
  12. 12.
    Canal C. MP Ginebra. Fibre-reinforced calcium phosphate cements: a review. J Mech Behav Biomed Mater. 2011;4:1658–71.CrossRefGoogle Scholar
  13. 13.
    Low KL, Tan SH, Zein SHS, McPhail DS, Boccaccini AR. Optimization of the mechanical properties of calcium phosphate/multi-walled carbon nanotubes/bovine serum albumin composites using response surface methodology. Mater Design. 2011;32:3312–9.CrossRefGoogle Scholar
  14. 14.
    Xu HHK, Quinn JB, Takagi S, Chow LC, Eichmiller FC. Strong and macroporous calcium phosphate cement: effects of porosity and fibre reinforcement. J Biomed Mater Res A. 2001;57:457–66.CrossRefGoogle Scholar
  15. 15.
    Wang X, Ye J, Wang Y. Reinforcement of calcium phosphate cement by bio-mineralized carbon nanotube. J Am Ceram Soc. 2007;90(3):962–4.CrossRefGoogle Scholar
  16. 16.
    Xu HHK, Quinn JB, Takagi S, Chow LC. Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials. 2004;25:1029–37.CrossRefGoogle Scholar
  17. 17.
    Xu HHK, Carey LE, Burguera EF. Strong macroporous, and in situ-setting calcium phosphate layered structures. Biomaterials. 2007;28:3786–96.CrossRefGoogle Scholar
  18. 18.
    Xu HHK, Carey LE, Simon CG. Premixed macroporous calcium phosphate cement scaffold. J Mater Sci Mater Med. 2007;18:1345–53.CrossRefGoogle Scholar
  19. 19.
    Zuo Y, Yang F, Wolke JGC, Li Y, Jansen JA. Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Acta Biomater. 2010;4:1238–47.CrossRefGoogle Scholar
  20. 20.
    Barnes CP, Sell SA, Boland ED, Simpson DG, Bowlin GL. Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev. 2007;59:1413–33.CrossRefGoogle Scholar
  21. 21.
    Kwon IK, Kidoaki S, Matsuda T. Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials. 2005;26:3929–39.CrossRefGoogle Scholar
  22. 22.
    Mukherjee S, Gualandi C, Focarete ML, Ravichandran R, Venugopal JR, Raghunath M, Ramakrishna S. Elastomeric electrospun scaffolds of poly(l-lactide-co-trimethylene carbonate) for myocardial tissue engineering. J Mater Sci Mater Med. 2011;22:1689–99.CrossRefGoogle Scholar
  23. 23.
    Bao C, Chen W, Weir MD, Thein-Han W, Xu HHK. Effects of electrospun submicron fibers in calcium phosphate cement scaffold on mechanical properties and osteogenic differentiation of umbilical cord stem cells. Acta Biomater. 2011;7(11):4037–44.CrossRefGoogle Scholar
  24. 24.
    Bigi A, Boanini E, Botter R, Panzavolta S, Rubini K. α-Tricalcium phosphate hydrolysis to octacalcium phosphate: effect of sodium polyacrylate. Biomaterials. 2002;23:1849–54.CrossRefGoogle Scholar
  25. 25.
    Panzavolta S, Bracci B, Rubini K, Bigi A. Optimization of a biomimetic bone cement: role of DCPD. J Inorg Biochem. 2011;105:1060–5.CrossRefGoogle Scholar
  26. 26.
    Bigi A, Cojazzi G, Koch MHJ, Pizzuto G, Ripamonti A, Roveri N. Structural analysis of turkey tendon collagen upon removal of the inorganic phase. Int J Biol Macromol. 1991;13:110–4.CrossRefGoogle Scholar
  27. 27.
    Kopinke FD, Remmler M, Mackenzie K, Moder M, Wachsen O. Thermal decomposition of biodegradable polyesters-ii poly(lactic acid). Polym Degrad Stab. 1996;53:329–42.CrossRefGoogle Scholar
  28. 28.
    Gualandi C. Porous polymeric bioresorbable scaffolds for tissue engineering. Springer Theses Series, Springer Berlin and Heidelberg GmbH & Co. K, Berlin 2011.Google Scholar
  29. 29.
    Li S. Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res. 1999;48:342–53.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • S. Panzavolta
    • 1
  • B. Bracci
    • 1
  • M. L. Focarete
    • 2
  • C. Gualandi
    • 2
  • A. Bigi
    • 1
  1. 1.Department of Chemistry “G. Ciamician”University of BolognaBolognaItaly
  2. 2.Department of Chemistry “G. Ciamician” and National Consortium of Materials Science and Technology (INSTM, Bologna RU)University of BolognaBolognaItaly

Personalised recommendations