Advertisement

Inactivation of microorganisms within collagen gel biomatrices using pulsed electric field treatment

  • Sarah Griffiths
  • Michelle Maclean
  • John G. Anderson
  • Scott J. MacGregor
  • M. Helen Grant
Article

Abstract

Pulsed electric field (PEF) treatment was examined as a potential decontamination method for tissue engineering biomatrices by determining the susceptibility of a range of microorganisms whilst within a collagen gel. High intensity pulsed electric fields were applied to collagen gel biomatrices containing either Escherichia coli, Pseudomonas aeruginosa, Staphylococcus epidermidis, Candida albicans, Saccharomyces cerevisiae or the spores of Aspergillus niger. The results established varying degrees of microbial PEF susceptibility. When high initial cell densities (106–107 CFU ml−1) were PEF treated with 100 pulses at 45 kV cm−1, the greatest log reduction was achieved with S. cerevisiae (~6.5 log10 CFU ml−1) and the lowest reduction achieved with S. epidermidis (~0.5 log10 CFU ml−1). The results demonstrate that inactivation is influenced by the intrinsic properties of the microorganism treated. Further investigations are required to optimise the microbial inactivation kinetics associated with PEF treatment of collagen gel biomatrices.

Keywords

Pulse Electric Field Pulse Number Inactivation Rate Pulse Electric Field Treatment Microbial Inactivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

SG was supported by an EPSRC studentship. We thank David Currie and Catherine Henderson for their excellent technical assistance.

References

  1. 1.
    Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–51.CrossRefGoogle Scholar
  2. 2.
    Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cell Mater. 2003;5:29–40.Google Scholar
  3. 3.
    Kwakman PHS, Te Velde AA, Vandenbroucke-Grauls CMJE, Van Deventer SJH, Zaat SAJ. Treatment and prevention of Staphylococcus epidermidis experimental biomaterial-associated infection by bactericidal peptide 2. Antimicrob Agents Chemother. 2006;50(12):3977–83.CrossRefGoogle Scholar
  4. 4.
    Boelens JJ, Dankert J, Murk JL, Weening JJ, van der Poll T, Dingemans KP, et al. Biomaterial-associated persistence of Staphylococcus epidermidis in pericatheter macrophages. J Infect Dis. 2000;181(4):1337–49.CrossRefGoogle Scholar
  5. 5.
    Madigan MT, Martinko JM, Brock TD. Brock biology of microorganisms. Upper Saddle River: Pearson Prentice Hall; 2006.Google Scholar
  6. 6.
    Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis. 2001;7(2):277–81.CrossRefGoogle Scholar
  7. 7.
    Von Eiff C, Jansen B, Kohnen W, Becker K. Infections associated with medical devices: pathogenesis, management and prophylaxis. Drugs. 2005;65(2):179–214.CrossRefGoogle Scholar
  8. 8.
    Kuijer R, Jansen EJP, Emans PJ, Bulstra SK, Riesle J, Pieper J, et al. Assessing infection risk in implanted tissue-engineered devices. Biomaterials. 2007;28(34):5148–54.CrossRefGoogle Scholar
  9. 9.
    Gorham SD, Srivastava S, French DA, Scott R. The effect of gamma-ray and ethylene oxide sterilization on collagen-based wound-repair materials. J Mater Sci Mater Med. 1993;4(1):40–9.CrossRefGoogle Scholar
  10. 10.
    Griffiths S, Smith S, MacGregor SJ, Anderson JG, Walle Cvd, Beveridge JR, et al. Pulsed electric field treatment as a potential method for microbial inactivation in scaffold materials for tissue engineering: the inactivation of bacteria in collagen gel. J Appl Microbiol. 2008;105(4):963–9.CrossRefGoogle Scholar
  11. 11.
    Chevallay B, Abdul-Malak N, Herbage D. Mouse fibroblasts in long-term culture within collagen three-dimensional scaffolds: influence of crosslinking with diphenylphosphorylazide on matrix reorganization, growth, and biosynthetic and proteolytic activities. J Biomed Mater Res. 2000;49(4):448–59.CrossRefGoogle Scholar
  12. 12.
    Yunoki S, Ikoma T, Monkawa A, Ohta K, Tanaka J, Sotome S, et al. Influence of gamma irradiation on the mechanical strength and in vitro biodegradation of porous hydroxyapatite/collagen composite. J Am Ceram Soc. 2006;89:2977–9.Google Scholar
  13. 13.
    Cheung DT, Perelman N, Tong D, Nimni ME. The effect of gamma-irradiation on collagen molecules, isolated alpha-chains, and crosslinked native fibers. J Biomed Mater Res. 1990;24(5):581–9.CrossRefGoogle Scholar
  14. 14.
    Smith S, Griffiths S, Macgregor S, Beveridge J, Anderson J, van der Walle C, et al. Pulsed electric field as a potential new method for microbial inactivation in scaffold materials for tissue engineering: the effect on collagen as a scaffold. J Biomed Mater Res A. 2008;90(3):844–51.Google Scholar
  15. 15.
    Manas P, Barsotti L, Cheftel JC. Microbial inactivation by pulsed electric fields in a batch treatment chamber: effects of some electrical parameters and food constituents. Innov Food Sci Emerg Technol. 2001;2(4):239–49.CrossRefGoogle Scholar
  16. 16.
    Ravishankar S, Fleischman GJ, Balasubramaniam VM. The inactivation of Escherichia coli O157:H7 during pulsed electric field (PEF) treatment in a static chamber. Food Microbiol. 2002;19(4):351–61.CrossRefGoogle Scholar
  17. 17.
    Yaqub S, Anderson JG, MacGregor SJ, Rowan NJ. Use of a fluorescent viability stain to assess lethal and sublethal injury in food-borne bacteria exposed to high-intensity pulsed electric fields. Lett Appl Microbiol. 2004;39:246–51.CrossRefGoogle Scholar
  18. 18.
    Donsi G, Ferrari G, Pataro G. Inactivation kinetics of Saccharomyces cerevisiae by pulsed electric fields in a batch treatment chamber: the effect of electric field unevenness and initial cell concentration. J Food Eng. 2007;78(3):784–92.CrossRefGoogle Scholar
  19. 19.
    Barbosa-Canovas GV, Gongora-Nieto MM, Pothakamury UR, Swanson BG. Preservation of foods with pulsed electric fields. London: Academic Press; 1999.Google Scholar
  20. 20.
    Elsdale T, Bard J. Collagen substrata for studies on cell behavior. J Cell Biol. 1972;54(3):626–37.CrossRefGoogle Scholar
  21. 21.
    Beveridge JR, MacGregor SJ, Anderson JG, Fouracre RA. The influence of pulse duration on the inactivation of bacteria using monopolar and bipolar profile pulsed electric fields. IEEE Trans Plasma Sci. 2005;33(4):1287–93.CrossRefGoogle Scholar
  22. 22.
    Songnuan W, Kirawanich P. High-intensity nanosecond pulsed electric field effects on early physiological development in Arabidopsis thaliana. World Acad Sci Eng Technol. 2011;77:208–12.Google Scholar
  23. 23.
    Chen M-T, Jiang C, Vernier PT, Wu Y-H, Gundersen MA. Two-dimensional nanosecond electric field mapping based on cell electropermeabilization. PMC Biophys. 2009;2(1):9.CrossRefGoogle Scholar
  24. 24.
    Food and Drug Administration US. Kinetics of microbial inactivation for alternative food processing technologies. 2009. http://www.fda.gov/Food/ScienceResearch/ResearchAreas/SafePracticesforFoodProcesses/ucm101662.htm. Accessed 22 Dec 2011.
  25. 25.
    Aronsson K, Lindgren M, Johansson BR, Rönner U. Inactivation of microorganisms using pulsed electric fields: the influence of process parameters on Escherichia coli, Listeria innocua, Leuconostoc mesenteroides and Saccharomyces cerevisiae. Innov Food Sci Emerg Technol. 2001;2(1):41–54.CrossRefGoogle Scholar
  26. 26.
    Mazurek B, Lubicki P, Staroniewicz Z. Effect of short HV pulses on bacteria and fungi. IEEE Trans Dielectr Electr Insul. 1995;2(3):418–25.CrossRefGoogle Scholar
  27. 27.
    Pothakamury UR, Monsalve-Gonzàlez A, Barbosa-Cánovas GV, Swanson BG. Inactivation of Escherichia coli and Staphylococcus aureus in model foods by pulsed electric field technology. Food Res Int. 1995;28(2):167–71.CrossRefGoogle Scholar
  28. 28.
    Espino-Cortes F, El-Hag AH, Adedayo O, Jayaram S, Anderson W. Water processing by high intensity pulsed electric fields. IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Missouri, USA. 2006:684–7.Google Scholar
  29. 29.
    Raso J, Heinz V. Pulsed electric fields technology for the food industry: fundamentals and applications. New York: Springer; 2006.CrossRefGoogle Scholar
  30. 30.
    Yang L, Li H, Wang K, Tan W, Yang W, Zheng J. Atomic force microscopy study of the effect of pulsed electric field on Staphylococcus epidermidis. Anal Chem. 2008;80(16):6222–7.CrossRefGoogle Scholar
  31. 31.
    MacGregor SJ, Farish O, Fouracre R, Rowan NJ, Anderson JG. Inactivation of pathogenic and spoilage microorganisms in a test liquid using pulsed electric fields. IEEE Trans Plasma Sci. 2000;28(1):144–9.CrossRefGoogle Scholar
  32. 32.
    Hülsheger H, Potel J, Niemann EG. Electric field effects on bacteria and yeast cells. Radiat Environ Biophys. 1983;22(2):149–62.CrossRefGoogle Scholar
  33. 33.
    Zhang Q, Chang FJ, Barbosa-Cánovas GV, Swanson BG. Inactivation of microorganisms in a semisolid model food using high voltage pulsed electric fields. Lebensmittel-Wissenschaft und-Technologie. 1994;27:538–43.CrossRefGoogle Scholar
  34. 34.
    Grahl T, Märkl H. Killing of microorganisms by pulsed electric fields. Appl Microbiol Biotechnol. 1996;45(1):148–57.CrossRefGoogle Scholar
  35. 35.
    Fiedurek J. Influence of a pulsed electric field on the spores and oxygen consumption of Aspergillus niger and its citric acid production. Acta Biotechnologica. 1999;19(2):179–86.CrossRefGoogle Scholar
  36. 36.
    Sun D-W. Emerging technologies for food processing. London: Academic Press; 2005.Google Scholar
  37. 37.
    Friess W, Schlapp M. Sterilization of gentamicin containing collagen/PLGA microparticle composites. Eur J Pharm Biopharm. 2006;63:176–87.CrossRefGoogle Scholar
  38. 38.
    Shimeld LA, Rodgers AT. Essentials of diagnostic microbiology. Albany: Delmar; 1999.Google Scholar
  39. 39.
    Mcdonnell GE. Antisepsis, disinfection, and sterilization: types, action, and resistance. Washington, DC: ASM Press; 2007.Google Scholar
  40. 40.
    Nather A, Yusof N, Hilmy N. Radiation in tissue banking: basic science and clinical applications of irradiated tissue allografts. Hackensack: World Scientific; 2007.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Sarah Griffiths
    • 1
    • 2
  • Michelle Maclean
    • 2
  • John G. Anderson
    • 2
  • Scott J. MacGregor
    • 2
  • M. Helen Grant
    • 1
  1. 1.Bioengineering UnitUniversity of StrathclydeGlasgowUK
  2. 2.Department of Electronic and Electrical Engineering, The Robertson Trust Laboratory for Electronic Sterilisation TechnologiesUniversity of StrathclydeGlasgowUK

Personalised recommendations