Novel alginate based nanocomposite hydrogels with incorporated silver nanoparticles

  • Bojana Obradovic
  • Jasmina Stojkovska
  • Zeljka Jovanovic
  • Vesna Miskovic-Stankovic


Alginate colloid solution containing electrochemically synthesized silver nanoparticles (AgNPs) was investigated regarding the nanoparticle stabilization and possibilities for production of alginate based nanocomposite hydrogels in different forms. AgNPs were shown to continue to grow in alginate solutions for additional 3 days after the synthesis by aggregative mechanism and Ostwald ripening. Thereafter, the colloid solution remains stable for 30 days and could be used alone or in mixtures with aqueous solutions of poly(vinyl alcohol) (PVA) and poly(N-vinyl-2-pyrrolidone) (PVP) while preserving AgNPs as verified by UV–Vis spectroscopy studies. We have optimized techniques for production of Ag/alginate microbeads and Ag/alginate/PVA beads, which were shown to efficiently release AgNPs decreasing the Escherichia coli concentration in suspensions for 99.9% over 24 h. Furthermore, Ag/hydrogel discs based on alginate, PVA and PVP were produced by freezing-thawing technique allowing adjustments of hydrogel composition and mechanical properties as demonstrated in compression studies performed in a biomimetic bioreactor.


Alginate Nucleus Pulposus Colloid Solution Electrochemical Synthesis Alginate Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Ministry of Education and Science of the Republic of Serbia (Grant III 45019). The authors would like to thank Dr. Maja Vukašinović-Sekulić, Faculty of Technology and Metallurgy, University of Belgrade, Serbia, for the investigation of antimicrobial activity.


  1. 1.
    Varaprasad K, Vimala K, Ravindra S, Narayana Reddy N, Venkata Subba Reddy G, Mohana Raju K. Fabrication of silver nanocomposite films impregnated with curcumin for superior antibacterial applications. J Mater Sci Mater Med. 2011; doi: 10.1007/s10856-011-4369-5.
  2. 2.
    Bhattacharya R, Mukherjee P. Biological properties of “naked” metal nanoparticles. Adv Drug Deliv Rev. 2008;60:1289–306.CrossRefGoogle Scholar
  3. 3.
    Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, Camargo ER, Barbos DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009;34:103–10.CrossRefGoogle Scholar
  4. 4.
    Sharma VK, Yngard RA, Lin Y. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci. 2009;145:83–96.CrossRefGoogle Scholar
  5. 5.
    Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab. 2010;95:2126–46.CrossRefGoogle Scholar
  6. 6.
    Martinsen A, Skjak-Braek G, Smidsrod O. Alginate as immobilization material; I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng. 1989;33:79–89.CrossRefGoogle Scholar
  7. 7.
    Drury JL, Dennis RG, Mooney DJ. The tensile properties of alginate hydrogels. Biomaterials. 2004;25:3187–99.CrossRefGoogle Scholar
  8. 8.
    Liu Y, Chen S, Zhong L, Wu G. Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation. Radiat Phys Chem. 2009;78:251–5.CrossRefGoogle Scholar
  9. 9.
    Saha S, Pal A, Pande S, Sarkar S, Panigrahi S, Pal T. Alginate gel-mediated photochemical growth of mono- and bimetallic gold and silver nanoclusters and their application to surface-enhanced Raman scattering. J Phys Chem C. 2009;113:7553–60.CrossRefGoogle Scholar
  10. 10.
    Saha S, Pal A, Kundu S, Basu S, Pal T. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir. 2010;26:2885–93.CrossRefGoogle Scholar
  11. 11.
    Thomas BH, Fryman JC, Liu K, Mason J. Hydrophilic–hydrophobic hydrogels for cartilage replacement. J Mech Behav Biomed. 2009;2:588–95.CrossRefGoogle Scholar
  12. 12.
    Ma R, Xiong D, Miao F, Zhang J, Peng Y. Novel PVP/PVA hydrogels for articular cartilage replacement. Mater Sci Eng C. 2009;29:1979–83.CrossRefGoogle Scholar
  13. 13.
    Joshi A, Fussell G, Thomas J, Hsuan A, Lowman A, Karduna A, Vresilovic E, Marcolongo M. Functional compressive mechanics of PVA/PVP nucleus pulposus replacement. Biomaterials. 2006;27:176–84.CrossRefGoogle Scholar
  14. 14.
    Zheng Y, Huang X, Wang Y, Xu H, Chen X. Performance and characterization of irradiated poly(vinyl alcohol)/polyvinylpyrrolidone composite hydrogels used as cartilage replacement. J Appl Polym Sci. 2009;113:736–41.CrossRefGoogle Scholar
  15. 15.
    Carotenuto G, Pepe GP, Nicolais L. Preparation and characterization of nano-sized Ag/PVP composites for optical applications. Eur Phys J B. 2000;16:11–7.CrossRefGoogle Scholar
  16. 16.
    Pastoriza-Santos I, Liz-Marzán LM. Formation of PVP-protected metal nanoparticles in DMF. Langmuir. 2002;18:2888–94.CrossRefGoogle Scholar
  17. 17.
    Yin B, Ma H, Wang S, Chen S. Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J Phys Chem B. 2003;107:8898–904.CrossRefGoogle Scholar
  18. 18.
    Shin HS, Yang HJ, Kim SB, Lee MS. Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution. J Colloid Interface Sci. 2004;274:89–94.CrossRefGoogle Scholar
  19. 19.
    Wang H, Xueliang Qiao X, Chen J, Wang X, Ding S. Mechanisms of PVP in the preparation of silver nanoparticles. Mater Chem Phys. 2005;94:449–53.CrossRefGoogle Scholar
  20. 20.
    Lee WF, Tsao KT. Effect of silver nanoparticles content on the various properties of nanocomposite hydrogels by in situ polymerization. J Mater Sci. 2010;45:89–97.CrossRefGoogle Scholar
  21. 21.
    Yu H, Xu X, Chen X, Lu T, Zhang P, Jing X. Preparation and antibacterial effects of PVA–PVP hydrogels containing silver nanoparticles. J Appl Polym Sci. 2007;103:125–33.CrossRefGoogle Scholar
  22. 22.
    Obradovic B, Miskovic-Stankovic V, Jovanovic Z, Stojkovska J. Production of alginate microbeads with incorporated silver nanoparticles. Patent application no. P-2010/0499, Intellectual Property Office of Republic of Serbia. 2010.Google Scholar
  23. 23.
    Richards VN, Rath NP, Buhro WE. Pathway from a molecular precursor to silver nanoparticles: the prominent role of aggregative growth. Chem Mater. 2010;22:3556–67.CrossRefGoogle Scholar
  24. 24.
    Nedovic VA, Obradovic B, Leskosek CI, Trifunovic O, Pesic R, Bugarski B. Electrostatic generation of alginate microbeads loaded with brewing yeast. Process Biochem. 2001;37:17–22.CrossRefGoogle Scholar
  25. 25.
    Petrovic M, Mitrakovic D, Bugarski B, Vonwil D, Martin I, Obradovic B. A novel bioreactor with mechanical stimulation for skeletal tissue engineering. CI&CEQ. 2009;15:41–4.CrossRefGoogle Scholar
  26. 26.
    Stojkovska J, Bugarski B, Obradovic B. Evaluation of alginate hydrogels under in vivo-like bioreactor conditions for cartilage tissue engineering. J Mater Sci Mater Med. 2010;21:2869–79.CrossRefGoogle Scholar
  27. 27.
    Stojkovska J, Jovanovic Z, Zvicer J, Kostic D, Vukasinovic-Sekulic M, Miskovic-Stankovic V, Obradovic B. Characterization of novel alginate nanocomposites with silver nanoparticles for biomedical applications. TERMIS-EU 2011 Meeting, Granada, Spain, Histol Histopathol. 2011;26(suppl 1):272–283.Google Scholar
  28. 28.
    Rodrıguez-Sanchez L, Blanco MC, Lopez-Quintela MA. Electrochemical synthesis of silver nanoparticles. J Phys Chem B. 2000;104:9683–8.CrossRefGoogle Scholar
  29. 29.
    Sung J-M. Nonisothermal phase formation kinetics in sol–gel-derived strontium bismuth tantalate. J Mater Res. 2001;16:2039–44.CrossRefGoogle Scholar
  30. 30.
    Chraska T, Hostomsky J, Klementova M, Dubsky J. Crystallization kinetics of amorphous alumina–zirconia–silica ceramics. J Eur Ceram Soc. 2009;29:3159–65.CrossRefGoogle Scholar
  31. 31.
    Angelescu DG, Vasilescu M, Somoghi R, Donescu D, Teodorescu VS. Kinetics and optical properties of the silver nanoparticles in aqueous L64 block copolymer solutions. Colloid Surf A Physicochem Eng Aspects. 2010;366:155–62.CrossRefGoogle Scholar
  32. 32.
    Travan A, Pelillo C, Donati I, Marsich E, Benincasa M, Scarpa T, Semeraro S, Turco G, Gennaro R, Paoletti S. Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules. 2009;10:1429–35.CrossRefGoogle Scholar
  33. 33.
    El-Sherbiny IM, Smyth HDC. Biodegradable nano-micro carrier systems for sustained pulmonary drug delivery: (I) Self-assembled nanoparticles encapsulated in respirable/swellable semi-IPN microspheres. Int J Pharm. 2010;395:132–41.CrossRefGoogle Scholar
  34. 34.
    Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology. 2007;18:1–9.CrossRefGoogle Scholar
  35. 35.
    Sheikh N, Akhavan A, Kassaee MZ. Synthesis of antibacterial silver nanoparticles by γ-irradiation. Phys E. 2009;42:132–5.CrossRefGoogle Scholar
  36. 36.
    Marius S, Lucian H, Marius M, Daniela P, Irina G, Romeo-Iulian O, Simona D, Viorel M. Enhanced antibacterial effect of silver nanoparticles obtained by electrochemical synthesis in poly(amide-hydroxyurethane) media. J Mater Sci Mater Med. 2011;22:789–96.CrossRefGoogle Scholar
  37. 37.
    Razzak MT, Darwis D, Sukirno Z. Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat Phys chem. 2001;62:107–13.CrossRefGoogle Scholar
  38. 38.
    Thomas J, Lowman A, Marcolongo M. Novel associated hydrogels for nucleus pulposus replacement. J Biomed Mater Res. 2003;67A:1320–37.CrossRefGoogle Scholar
  39. 39.
    Thomas J, Gomes K, Lowman A, Marcolongo M. The effect of dehydration history on PVA/PVP hydrogels for nucleus pulposus replacement. J Biomed Mater Res Part B Appl Biomater. 2004;69B:135–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Bojana Obradovic
    • 1
  • Jasmina Stojkovska
    • 1
  • Zeljka Jovanovic
    • 1
  • Vesna Miskovic-Stankovic
    • 1
  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations