In vitro release kinetics and physical, chemical and mechanical characterization of a POVIAC ® /CaCO 3 /HAP-200 composite

  • Javier Aragón
  • Ramón González
  • Gastón Fuentes
  • Luca Palin
  • Gianluca Croce
  • Davide Viterbo


Coralline calcium-hydroxyapatite and calcium carbonate from Porites Porites coral were added to a polymeric matrix based on polyvinyl acetate (POVIAC®), to obtain a novel bone substitute composite as well as a system for the controlled drug (cephalexin) release. Composite samples with different compositions were characterized by physical–chemical and mechanical methods. Furthermore, the in vitro release profile of cephalexin and the kinetic behavior of its release from these composites were analyzed by appropriate mathematical models. It was shown that there is no chemical interaction between the inorganic filler and the polymer matrix, each conserving the original properties of the raw materials. The compressive mechanical strength and Young modulus of the composite with 17.5% of POVIAC®, has better mechanical properties than those of cancellous bone. The variation of POVIAC® content can affect the cephalexin release kinetic in the composite. The cephalexin release mechanism from the composites can be considered as the result of the joint contribution of a prevailing Fickian diffusion and of polymer chain relaxation. It was also demonstrated that cephalexin is occluded inside the composites and not on their surface.


Compressive Strength Cancellous Bone Polyvinyl Acetate Bone Substitute Cephalexin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank FONDAZIONE ISI and the Association for the Promotion of the Scientific and Technological Development of Piedmont (ASP) for their financial support to this scientific project.


  1. 1.
    Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.CrossRefGoogle Scholar
  2. 2.
    Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop Relat Res. 1981;157:259–78.Google Scholar
  3. 3.
    Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510.CrossRefGoogle Scholar
  4. 4.
    Ogiso M. Reassessment of long-term use of dense HA as dental implant: case report. J Biomed Mater Res. 1998;43:318–20.CrossRefGoogle Scholar
  5. 5.
    Miyamato Y, Shikawa KI. Basic properties of calcium phosphatecement containing atelocollagen in its liquid or powder phases. Biomaterials. 1998;19:707–15.CrossRefGoogle Scholar
  6. 6.
    Itoh S, Kikuchi M, Takakuda K, Nagaoka K, Koyama Y, Tanaka J, et al. Implantation study of a novel hydroxyapatite/collagen (HAp/col) composite into weight-bearing sites of dogs. J Biomed Mater Res. 2002;63:507–15.CrossRefGoogle Scholar
  7. 7.
    Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J, et al. Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials. 2002;23:3227–34.CrossRefGoogle Scholar
  8. 8.
    Murugan R, Panduranga Rao K. Biodegradable coralline hydroxyapatite composite gel using natural alginate. Key Eng Mater. 2003;240–242:407–10.CrossRefGoogle Scholar
  9. 9.
    Wang X, Li Y, Wei J, De Groot K. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites. Biomaterials. 2002;23:4787–91.CrossRefGoogle Scholar
  10. 10.
    Murugan R, Rao KP. Graft polymerization of glycidylmethacrylate onto coralline hydroxyapatite. J Biomater Sci Polym Ed. 2003;14:457–68.CrossRefGoogle Scholar
  11. 11.
    Murugan R, Panduranga Rao K. Grafting of glycidyl methacrylate upon coralline hydroxyapatite in conjugation with demineralized bone matrix using redox initiating system. Macromol Res. 2003;11:14–8.CrossRefGoogle Scholar
  12. 12.
    Murugan R, Ramakrishna S. Bioresorbable composite bone paste using polysaccharide based nano hydroxyapatite. Biomaterials. 2004;25:3829–35.CrossRefGoogle Scholar
  13. 13.
    Suzarte A, Jordán G, Echevarría M, Iglesias G, Díaz E. Procedures for obtaining polymers derived from vinyl acetate and their uses. United State Patent No. 0306226, 2009. [on-line]. Available from: Access in May 2011.
  14. 14.
    Soundrapandian C, Datta S, Sa B. Drug-eluting implants for osteomyelitis. Crit Rev Ther Drug Carrier Syst. 2007;24:493–545.Google Scholar
  15. 15.
    Chen L, Wang H, Wang J, Chen M, Shang L. Ofloxacin-delivery system of a polyanhydride and polylactide blend used in the treatment of bone infection. J Biomed Mater Res B Appl Biomater. 2007;83:589–95.Google Scholar
  16. 16.
    Joosten U, Joist A, Frebel T, Brandt B, Diederichs S, Von Eiff C. Evaluation of an in situ setting injectable calcium phosphate as a new carrier material for gentamicin in the treatment of chronic osteomyelitis: studies in vitro and in vivo. Biomaterials. 2004;25:4287–95.CrossRefGoogle Scholar
  17. 17.
    Nandi SK, Kundu B, Ghosh SK, De DK, Basu D. Efficacy of nano-hydroxyapatite prepared by an aqueous solution combustion technique in healing bone defects of goat. J Vet Sci. 2008;9:183–91.CrossRefGoogle Scholar
  18. 18.
    Ghosh SK, Nandi SK, Kundu B, Datta S, De DK, Roy SK, et al. In vivo response of porous hydroxyapatite and beta-tricalcium phosphate prepared by aqueous solution combustion method and comparison with bioglass scaffolds. J Biomed Mater Res B Appl Biomater. 2008;86:217–27.Google Scholar
  19. 19.
    Nandi SK, Mukherjee P, Roy S, Kundu B, De DK, Basu D. Local antibiotic delivery systems for the treatment of osteomyelitis—a review. Mater Sci Eng C. 2009;29:2478–85.CrossRefGoogle Scholar
  20. 20.
    Klawitter JJ, Hulbert SF. Application of porous ceramics for the attachment of load bearing internal orthopedic applications. J Biomed Mater Res. 1971;5:161–229. doi: 10.1002/jbm.820050613.CrossRefGoogle Scholar
  21. 21.
    de Groot K, Klein CPAT, Wolke JGC, de Blieck-Hogervorst JMA. Chemistry of calcium phosphate bioceramics. In: Yamamuro T, Hench LL, Wilson J, editors. Handbook of bioactive ceramics. Vol. 2: calcium phosphate and hydroxylapatite ceramics. Boca Raton: CRC Press; 1990. p. 3–16.Google Scholar
  22. 22.
    White EW, Weber JN, Roy DM, Owen EL, Chiroff RT, White RA. Replamineform porous biomaterials for hard tissue implant applications. J Biomed Mater Res. 1975;9:23–7.CrossRefGoogle Scholar
  23. 23.
    Hulbert SF, Morrison SJ, Klawitter JJ. Tissue reaction to three ceramics of porous and non-porous structures. J Biomed Mater Res. 1972;6:347–74.CrossRefGoogle Scholar
  24. 24.
    Sopyan I, Mel M, Ramesh S, Khalid KA. Porous hydroxyapatite for artificial bone applications. Sci Tech Adv Mater. 2007;8:116–23.CrossRefGoogle Scholar
  25. 25.
    Kundu B, Lemos A, Soundrapandian C, Sen PS, Datta S, Ferreira JMF, et al. Development of porous HAp and b-TCP scaffolds by starch consolidation with foaming method and drug-chitosan bilayered scaffold based drug delivery system. J Mater Sci Mater Med. 2010;21:2955–69.CrossRefGoogle Scholar
  26. 26.
    Hughes SPF, Nixon J, Dash CV. Cephalexin in chronic osteomyelitis. J R Coll Surg Edinb. 1981;26:335–9.Google Scholar
  27. 27.
    Cabassu J, Moissonnier P. Surgical treatment of a vertebra fracture associated with a haematohenous osteomyeltis in a dog. Vet Comp Orthop Traumatol. 2007;20:227–30.Google Scholar
  28. 28.
    Wittmann DH. Chemotherapeutic principles of difficult-to-treat infections in surgery: II. Bone and joint infections. Infection. 1980;8:330–3.CrossRefGoogle Scholar
  29. 29.
    Yoshiba K, Yoshiba N, Iwaku M. Effects of antibacterial capping agents on dental pulps of monkeys mechanically exposed to oral microflora. J Endod. 1995;21:16–20.CrossRefGoogle Scholar
  30. 30.
    Ethell MT, Bennett RA, Brown MP, Merritt K, Davidson JS, Tran T. In vitro elution of gentamicin, amikacin and ceftiofur from polymethylmethacrylate and hydroxyapatite cement. Vet Surg. 2000;29:375–82.CrossRefGoogle Scholar
  31. 31.
    Otsuka M. A novel skeletal drug delivery system using self-setting bioactive glass bone cement. III. The in vitro drug release from bone cement containing indomethacin and its physicochemical properties. J Contr Release. 1994;31:111–9.CrossRefGoogle Scholar
  32. 32.
    Hesaraki S, Nemati R. Cephalexin-loaded injectable macroporous calcium phosphate bone cement. J Biomed Mater Res B Appl Biomater. 2009;89B:342–352.Google Scholar
  33. 33.
    Doadrio JC, Arcos D, Cabanas MV, Vallet-Regi M. Calcium sulfate-based cements containing cephalexin. Biomaterials. 2004;25:2629–35.CrossRefGoogle Scholar
  34. 34.
    Rauschmann MA, Wichelhaus TA, Strinal V, Dingeldein E, Zichner L, Schnettler R, et al. Nanocrystalline hydroxyapatite and calcium sulfate ac biodegradable composite carrier material for local delivery of antibiotics in bone infections. Biomaterials. 2005;26:2677–84.CrossRefGoogle Scholar
  35. 35.
    Hesaraki S, Moztarzadeh F, Nemati R, Nezafati N. Preparation and characterization of calcium sulfate–biomimetic apatite nanocomposites for controlled release of antibiotics. J Biomed Mater Res B Appl Biomater. 2009;91:651–61.Google Scholar
  36. 36.
    Yu D, Wong J, Matsuda Y, Fox JL, Higuchi WI, Otsuka M. Self-setting hydroxyapatite cement: a novel skeletal drug delivery system for antibiotics. J Pharm Sci. 1992;81:529–31.CrossRefGoogle Scholar
  37. 37.
    Otsuka M, Matsuda Y, Yu D, Wong J, Fox JL, Higuchi WI. A novel skeletal drug delivery system for anti-bacterial drugs using self-setting hydroxyapatite cement. Chem Pharm Bull. 1990;38:3500–2.CrossRefGoogle Scholar
  38. 38.
    Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drug dispersed in solid matrices. J Pharm Sci. 1963;52:1145–9.CrossRefGoogle Scholar
  39. 39.
    Castro H, Ledea O. Determinación de la bioactividad y la resistencia a la compresión de bloques de POLIAPATITA®. Química Nova. 2010;33:891–894. Available from: Access in May 2011.
  40. 40.
    Aragón J, González R, Nayrim B, Oliver L. Estudio cinético de liberación in vitro en un biomaterial compuesto por HAP-200/POVIAC/CaCO3. Rev Iberoam Polim. 2009;10:119–30.Google Scholar
  41. 41.
    Aragón J, González R, Fuentes G, Palin L, Croce G, Viterbo D. Characterization of novel controlled release system of cephalexin from polyvinyl acetate/CaCO3/coralline hydroxyapatite composite. Sci Eng Compos Mater. 2010;17:173–82.CrossRefGoogle Scholar
  42. 42.
    Aragón J, González R, Fuentes G, Palin L, Croce G, Viterbo D. Development and characterization of a novel bioresorbable and bioactive biomaterial based on polyvinyl acetate, calcium carbonate and coralline hydroxyapatite. Mater Res. 2011;14:25–30.CrossRefGoogle Scholar
  43. 43.
    González R, Handal E, Fernández J. Cinética de la reacción de transformación hidrotérmica del coral a hidroxiapatita. Quim Nova. 1993;16:513–6.Google Scholar
  44. 44.
    Blardoni F, Maestre H, González R. Coral bioimplants orthopedic. Bioceramics. 1998;11:599–602.Google Scholar
  45. 45.
    González R, Blardoni F, Maestre H, Pereda O, Pancorbo E, Ciénaga M. Long term results of the coraline porous hydroxyapatite HAP-200 as bone implant biomaterial in orthopedics and traumatology. Revista CENIC Ciencias Biológicas. 2000;32:97–101.Google Scholar
  46. 46.
    Wikesjo UM, Lim WH, Razi SS, Sigurdsson TJ, Lee MB, Tatakis DN, et al. Periodontal repair in dogs: a bioabsorbable calcium carbonate coral implant enhances space provision for alveolar bone regeneration in conjunction with guided tissue regeneration. J Periodontol. 2003;74:957–64.CrossRefGoogle Scholar
  47. 47.
    Paul W, Sharma CP. Ceramic drug delivery: a perspective. J Biomater Appl. 2003;17:253–63.CrossRefGoogle Scholar
  48. 48.
    Guillemin G, Meunier A, Dallant P, Christel P, Pouliquen JC, Sedel L. Comparison of coral resorption and bone apposition with two natural corals of different porosities. J Biomed Mater Res. 1989;23:765–79.CrossRefGoogle Scholar
  49. 49.
    Green D, Walsh D, Yang X, Mann S, Oreffo ROC. Stimulation of human bone marrow stromal cells using growth factor encapsulated calcium carbonate porous microspheres. J Mater Chem. 2004;14:2206–12.CrossRefGoogle Scholar
  50. 50.
    Green DW, Bolland BJRF, Kanczler JM, Lanham SA, Walsh D, Mann S, et al. Augmentation of skeletal tissue formation in impaction bone grafting using vaterite microsphere biocomposites. Biomaterials. 2009;30:1918–27.CrossRefGoogle Scholar
  51. 51.
    Gonzalez GA, Heinämäki J, Mirza S, Antikainen O, Iraizoz A, Suzarte A, et al. Physical solid-state properties and dissolution of sustained-release matrices of polyvinylacetate. Eur J Pharm Biopharm. 2005;59:343–50.CrossRefGoogle Scholar
  52. 52.
    Rafferty DW, Koenig JL. Diffusion of binary non-solvent mixtures in polymers: aqueous ethanol solutions in poly(vinyl acetate). Appl Spectros. 2002;56:1245–50.CrossRefGoogle Scholar
  53. 53.
    Mallapragada SK. McCarthy-Schroeder poly(vinyl alcohol) as a drug delivery carrier. In: Wise DL, editors. Handbook of pharmaceutical controlled release technology. New York: Marcel Dekker; 2000. pp. 31–47.Google Scholar
  54. 54.
    Schmidt WG, Mehnert W, Fromming KH. Controlled release from spherical matrices prepared in a laboratory scale rotor-granulator—release mechanism interpretation using individual pellet data. Eur J Pharm Biopharm. 1996;42:348–50.Google Scholar
  55. 55.
    Zhang F, McGinity JW. Properties of holt-melt extruded theophylline tablets containing poly (vinylacetate). Drug Dev Ind Pharm. 2000;26:931–42.CrossRefGoogle Scholar
  56. 56.
    Ali A, Sharma SN. Sustained release through coated microparticles of nifedipine. Indian Drugs. 1996;33:30–5.Google Scholar
  57. 57.
    Niwa T, Takeuchi H, Hino T, Itoh A, Kawashima Y, Kiuchi K. Preparation of agglomerated crystals for direct tableting and microencapsulation by spherical crystallization technique with a continuous system. Pharm Res. 1994;11:478–84.CrossRefGoogle Scholar
  58. 58.
    Diaz Polanco I, Gil Apán JM, Suzarte A. Evaluation of a polyvinil acetate granulate as new excipient for direct compression | [Evaluación de un granulado de acetato de polivinilo como nuevo excipiente para compresión directa]. Lat Am J Pharm. 2008;27:548–52.Google Scholar
  59. 59.
    Korsmeyer RW, Peppas NA. Swelling-controlled delivery systems for pharmaceutical application: macromolecular and modeling consideration. In: Roseman JT, Mansdorf SZ, editors. Controlled release delivery systems. New York: Marcel Dekker; 1983. p. 77–9.Google Scholar
  60. 60.
    Peppas NA, Sahlin JJ. A simple equation for the description of solute release. III. Coupling of diffusion and relaxation. Int J Pharm. 1989;57:169–72.CrossRefGoogle Scholar
  61. 61.
    Lindner W, Lippold B. Drug release from hydrocolloid embedding with high or low susceptibility to hydrodynamic stress. Pharm Res. 1995;12:1781–5.CrossRefGoogle Scholar
  62. 62.
    Ritger PL, Peppas NA. A simple equation for description of solute release. II. Fickian and anomalous release from swellable device. J Contr Release. 1987;5:37–42.CrossRefGoogle Scholar
  63. 63.
    Yamoaka K, Nakagawa T, Uno T. Application of the akaike information criterion (AIC) in the evaluation of linear pharmacokinetics equations. J Pharmacokinet Biopharm. 1978;6:165–75.CrossRefGoogle Scholar
  64. 64.
    Hughes JM, Cameron M, Crowley KD. Structural variations in natural F, OH, and Cl apatites. Am Mineral. 1989;74:870–6.Google Scholar
  65. 65.
    Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem. 1974;13:194–207.CrossRefGoogle Scholar
  66. 66.
    Penel G, Leroy G, Rey C, Bres E. MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif Tissue Int. 1998;63:475–81.CrossRefGoogle Scholar
  67. 67.
    Markgraf SA, Reeder RJ. High-temperature structure refinements of calcite and magnesite. Am Mineral. 1985;70:590–600.Google Scholar
  68. 68.
    Dal Negro A, Ungaretti L. Refinement of the crystal structure of aragonite. Am Mineral. 1971;56:768–72.Google Scholar
  69. 69.
    Behens G, Kuhn LT, Ubic R, Heuer AH. Raman spectra of vateritic calcium carbonate. Spectros Lett. 1995;28:983–95.CrossRefGoogle Scholar
  70. 70.
    Zhou GT, Yao QZ, Ni J, Jin G. Formation of aragonite mesocrystals and implication for biomineralization. Am Mineral. 2009;94:293–302.CrossRefGoogle Scholar
  71. 71.
    Tunusoglu Ö, Shahwan T, Eroglu AE. Retention of aqueous Ba2+ ions by calcite and aragonite over a wide range of concentrations: characterization of the uptake capacity, and kinetics of sorption and precipitate formation. Geochem J. 2007;41:379–89.CrossRefGoogle Scholar
  72. 72.
    Anderson A. Group theoretical analysis of the ν1 (CO3 2-) vibration in crystalline calcium carbonate. Spectros Lett. 1996;29:819–25.CrossRefGoogle Scholar
  73. 73.
    Ramdas AK. The infra-red absorption spectra of sodium nitrate and calcite. Proc Indian Acad Sci. 1953;37:441–50.Google Scholar
  74. 74.
    Kontoyannis CG, Vagenas NV. Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy. Analyst. 2000;125:251–5.CrossRefGoogle Scholar
  75. 75.
    Tomic Z, Makreski P, Gajic B. Identification and spectra-structure determination of soil minerals: Raman study supported by IR spectroscopy and X-ray powder diffraction. J Raman Spectros. 2010;41:582–6.CrossRefGoogle Scholar
  76. 76.
    Arias JL, Gómez-Gallo A, Delgado AV, Gallardo V. Study of the stability of Kollidon® SR suspensions for pharmaceutical applications. Colloid Surf Physicochem Eng Aspect. 2009;338:107–13.CrossRefGoogle Scholar
  77. 77.
    Selvasekarapandian S, Baskaran R, Kamishima O, Kawamura J, Hattori T. Laser Raman and FTIR studies on Li+ interaction in PVAc-LiClO4 polymer electrolytes. Spectrochim Acta Mol Biomol Spectros. 2006;65:1234–40.CrossRefGoogle Scholar
  78. 78.
    Mas Haris MRH, Kathiresan S, Mohan S. Normal coordinate analysis of polyvinyl acetate. Asian J Chem. 2008;20:4511–8.Google Scholar
  79. 79.
    Stigter M, Bezemer J, de Groot K, Layrolle P. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Contr Release. 2004;99:127–37.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Javier Aragón
    • 1
  • Ramón González
    • 2
  • Gastón Fuentes
    • 3
  • Luca Palin
    • 4
  • Gianluca Croce
    • 4
  • Davide Viterbo
    • 4
  1. 1.National Center for Scientific ResearchHavanaCuba
  2. 2.Center for NeuroscienceHavanaCuba
  3. 3.Biomaterials CenterUniversity of HavanaHavanaCuba
  4. 4.Department of Advanced Science and TechnologyUniversity of Piemonte Orientale “A. Avogadro”AlessandriaItaly

Personalised recommendations