Effect of chitosan multilayers encapsulation on controlled release performance of drug-loaded superparamagnetic alginate nanoparticles

  • Chunyin Lu
  • Peng Liu


The near monodispersed ibuprofen-loaded superparamagnetic alginate (AL/IBU/Fe3O4) nanoparticles with particles size less than 200 nm were prepared via the facile heterogeneous coprecipitation of the superparamagnetic Fe3O4 nanoparticles, sodium alginate (AL) and the model drug ibuprofen (IBU) from the aqueous dispersion. Then the chitosan multilayers were self-assembled onto the AL/IBU/Fe3O4 nanoparticles to produce novel magnetic-targeted controlled release drug delivery system, with chitosan as the polycation (CS) and the carboxymethyl chitosan (CMCS) as the polyanion. The drug controlled releasing behaviors of the AL/IBU/Fe3O4 nanoparticles and the CS multilayers encapsulated ibuprofen-loaded superparamagnetic alginate ((AL/IBU/Fe3O4)@(CS–CMCS)3) nanoparticles were compared in the different pH media. In media with the same pH value, the encapsulated vessels exhibited the slower releasing rate.


Chitosan Alginate Dynamic Light Scattering Drug Delivery System Fe3O4 Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This Project was granted financial support from the National Nature Science Foundation of China (Grant No. 20904017), the Program for New Century Excellent Talents in University (Grant No. NCET-09-0441) and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2012-k12).


  1. 1.
    Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci. 2008;33:448–77.CrossRefGoogle Scholar
  2. 2.
    Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloid Surf B: Biointerfaces. 2010;75:1–18.CrossRefGoogle Scholar
  3. 3.
    Glen A. The impact of nanotechnology in drug delivery: global developments. Market Anal. Future Prospects (2005). Available from:
  4. 4.
    Wang W, Liu XD, Xie YB, Zhang H, Yu WT, Xiong Y, Xie WY, Ma XJ. Microencapsulation using natural polysaccharides for drug delivery and cell implantation. J Mater Chem. 2006;16:3252–67.CrossRefGoogle Scholar
  5. 5.
    Resi CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: NBM. 2008;2:8–21.Google Scholar
  6. 6.
    Resi CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation II. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine: NBM. 2008;2:53–65.Google Scholar
  7. 7.
    Zhang WJ, Gilstrap K, Wu LY, Remant KC, Moss MA, Wang Q, Lu XB, He XM. Synthesis and characterization of thermally responsive pluronic F127-chitosan nanocapsules for controlled release and intercellular delivery of small molecules. ACS Nano. 2010;11:6747–59.CrossRefGoogle Scholar
  8. 8.
    Chen YF, Lin XF, Park H, Greever R. Study of artemisinin nanocapsules as anticancer drug delivery systems. Nanomedicine: NBM. 2009;5:316–22.CrossRefGoogle Scholar
  9. 9.
    Liu J, Jiang ZZ, Zhang SM, Saltzman WM. Poly(w-pentadecalactone-co-butylene-co-succinate) nanoparticles as biodegradable carriers for camptothecin delivery. Biomaterials. 2009;30:5707–19.CrossRefGoogle Scholar
  10. 10.
    Anitha A, Deepagan VG, Divya Rani VV, Menon D, Nair SV, Jayakumar R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded destran sulphate-chitosan nanoparticles. Carbohydr Polym. 2011;84:1158–64.CrossRefGoogle Scholar
  11. 11.
    Santander-Ortega MJ, Stauner T, Loretz B, Ortega-Vinuesa JL, Bastos-Gonzalez D, Wenz G, Schaefer UF, Lehr CM. Nanoparticles made from novel starch derivatives for transdermal drug delivery. J Controlled Release. 2010;141:85–91.CrossRefGoogle Scholar
  12. 12.
    Avadi MR, Sadeghi AMM, Mohammadpour N, Adedin S, Atyabi F, Dinarvand R, Rafiee-Tehrani M. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine: NBM. 2010;6:58–63.CrossRefGoogle Scholar
  13. 13.
    Muthu MS, Rawat MK, Mishra A, Singh S. PLGA nanoparticle formulations of risperidone: preparation and neuropharmacological evaluation. Nanomedicine: NBM. 2009;5:323–33.CrossRefGoogle Scholar
  14. 14.
    Tong R, Cheng JJ. Ring-opening polymerization-mediated controlled formulation of polylactide-drug nanoparticles. J Am Chem Soc. 2009;131:4744–54.CrossRefGoogle Scholar
  15. 15.
    Ji JG, Hao SL, Wu DJ, Huang R, Xu Y. Preparation, characterization and in vitro release of chitosan nanoparticles loaded with gentamicin and salicylic acid. Carbohydr Polym. 2011;85:803–8.CrossRefGoogle Scholar
  16. 16.
    Mornet S, Vasseur S, Grasset F, Duguet E. Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem. 2004;14:2161–75.CrossRefGoogle Scholar
  17. 17.
    Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer omaging. J Am Chem Soc. 2006;128:7383–9.CrossRefGoogle Scholar
  18. 18.
    Dobson J. Magnetic micro-nano-particle-based targeting for drug and gene delivery. Nanomedicine. 2006;1:31–7.CrossRefGoogle Scholar
  19. 19.
    McBain SC, Yiu HHP, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomedicine. 2008;3:169–80.Google Scholar
  20. 20.
    Iannone A, Magin RL, Walczack T, Federico M, Swartz HM, Tomasi A, Vannini V. Blood clearance of dextran magnetite particles determined by a non-invasive in vivo ESR method. Magn Reson Med. 1991;22:435–42.CrossRefGoogle Scholar
  21. 21.
    Okon E, Pouliquen D, Okon P, Kovaleva ZV, Stepanova TP, Lavit SG, Kudryavtsev BN, Jallet P. Biodegradation of magnetite dextran nanoparticles in the rat: a histologic and biophysical study. Lab Invest. 1994;91:895–903.Google Scholar
  22. 22.
    Mu B, Liu P, Dong Y, Lu CY, Wu XL. Superparamagnetic pH-sensitive multilayer hybrid hollow microspheres for targeted controlled release. J Polym Sci, Part A Polym Chem. 2010;48:3135–44.CrossRefGoogle Scholar
  23. 23.
    Lu CY, Mu B, Liu P. Stimuli-responsive multilayer chitosan hollow microspheres via layer-by-layer assembly. Colloid Surf B-Biointerfaces. 2011;83:254–9.CrossRefGoogle Scholar
  24. 24.
    Draget KI, Skjak-Braek G, Smidsrod O. Alginate based new materials. Int J Biol Macromol. 1997;21:47–55.CrossRefGoogle Scholar
  25. 25.
    Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.CrossRefGoogle Scholar
  26. 26.
    Park JY, Daksha P, Lee GH, Woo S, Chang YM. Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications. Nanotechnology. 2008;19:365603.CrossRefGoogle Scholar
  27. 27.
    Wang YX, Hussain SM, Krestin GP. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2011;11:2319–31.CrossRefGoogle Scholar
  28. 28.
    Zhang L, Qiao SZ, Jin YG, Chen ZG, Gu HC, Lu GQ. Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals: fabrication and structure control. Adv Mater. 2008;20:805–9.CrossRefGoogle Scholar
  29. 29.
    Qiu XP, Leporatti S, Donath E, Mohwald H. Studies on the drug release properties of polysaccharide multilayers encapsulated Ibuprofen microparticles. Langmuir. 2001;17:5357–80.CrossRefGoogle Scholar
  30. 30.
    Levis KA, Lane ME, Corrigan OI. Effect of buffer media composition on the solubility and effective permeability coefficient of ibuprofen. Int J Pharm. 2003;253:49–59.CrossRefGoogle Scholar
  31. 31.
    Ciofani G, Raffa V, Obata Y, Menciassi A, Dario P, Takeoka S. Magneticic driven alginate nanoparticles for targeted drug delivery. Curr Nanosci. 2008;4:212–8.CrossRefGoogle Scholar
  32. 32.
    Niwa T, Takeuchi H, Hino T, Kunou N, Kawashima Y. Preparations of biodegradable nanospheres of water-soluble, insoluble drugs with D,L-lactide/glycolide copolymer by a novel spontaneous emulsification solvent diffusion method, and the drug release behavior. J Control Release. 1993;25:89–98.CrossRefGoogle Scholar
  33. 33.
    Leroux J-C, Allemann E, Jaeghere FD, Doelker E, Gurny R. Biodegradable nanoparticles-From sustained release formulations to improved site specific drug delivery. J Control Release. 1996;39:339–50.CrossRefGoogle Scholar
  34. 34.
    Qntipov AA, Sukhorukov GB, Donath E, Mohwald H. Suatained release properties of polyelectrolyte multilayer capsules. J Phys Chem B. 2001;105:2281–4.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.State Key Laboratory of Applied Organic Chemistry and Institute of Polymer Science and Engineering, College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouChina

Personalised recommendations