Skip to main content
Log in

Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The use of polymers naturally occurring in the extracellular matrix (ECM) is a promising strategy in regenerative medicine. If compared to natural ECM proteins, proteins obtained by recombinant DNA technology have intrinsic advantages including reproducible macromolecular composition, sequence and molecular mass, and overcoming the potential pathogens transmission related to polymers of animal origin. Among ECM-mimicking materials, the family of recombinant elastin-like polymers is proposed for drug delivery applications and for the repair of damaged elastic tissues. This work aims to evaluate the potentiality of a recombinant human elastin-like polypeptide (HELP) as a base material of cross-linked matrices for regenerative medicine. The cross-linking of HELP was accomplished by the insertion of cross-linking sites, glutamine and lysine, in the recombinant polymer and generating ε-(γ-glutamyl) lysine links through the enzyme transglutaminase. The cross-linking efficacy was estimated by infrared spectroscopy. Freeze-dried cross-linked matrices showed swelling ratios in deionized water (≈2500%) with good structural stability up to 24 h. Mechanical compression tests, performed at 37°C in wet conditions, in a frequency sweep mode, indicated a storage modulus of 2/3 kPa, with no significant changes when increasing number of cycles or frequency. These results demonstrate the possibility to obtain mechanically resistant hydrogels via enzymatic crosslinking of HELP. Cytotoxicity tests of cross-linked HELP were performed with human umbilical vein endothelial cells, by use of transwell filter chambers for 1–7 days, or with its extracts in the opportune culture medium for 24 h. In both cases no cytotoxic effects were observed in comparison with the control cultures. On the whole, the results suggest the potentiality of this genetically engineered HELP for regenerative medicine applications, particularly for vascular tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rodriguez-Cabello JC, Martin L, Alonso M, Arias FJ, Testera AM. ‘‘Recombinamers’’ as advanced materials for the post-oil age. Polymers. 2009;50:5159–69.

    Article  CAS  Google Scholar 

  2. Tamerler C, Sarikaya M. Molecular biomimetics: nanothecnology and bionanotechnology using genetically engineered peptides. Phil Trans R Soc A. 2009;367:1705–26.

    Article  CAS  Google Scholar 

  3. Badylak SF, Freytes DO, Gilbert TW. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 2009;5(1):1–13.

    Article  CAS  Google Scholar 

  4. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60(2):184–98.

    Article  CAS  Google Scholar 

  5. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487–92.

    Article  CAS  Google Scholar 

  6. Mithieux SM, Rasko JEJ, Weiss AS. Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials. 2004;25:4921–7.

    Article  CAS  Google Scholar 

  7. Daamen WF, Veerkamp JH, van Hest JCM, van Kuppevelt TH. Elastin as a biomaterial for tissue engineering. Biomaterials. 2007;28:4378–98.

    Article  CAS  Google Scholar 

  8. Chow D, Nunalee ML, Lim DW, Simnick AJ, Chilkoti A. Peptide-based biopolymers in biomedicine and biotechnology. Mater Sci Eng R Rep. 2008;6(2):125–55.

    Article  Google Scholar 

  9. Floss DM, Schallau K, Rose-John S, Conrad U, Scheller J. Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application. Trends Biotechnol. 2010;28(1):37–45.

    Article  CAS  Google Scholar 

  10. Urry DW. Entropic elastic processes in protein mechanisms I. Elastic structure due to an inverse temperature transition and elasticity due to internal chain dynamics. J Protein Chem. 1988;7:1–34.

    Article  CAS  Google Scholar 

  11. Luan CH, Harris RD, Prasad KU, Urry DW. Differential scanning calorimetry studies of the inverse temperature transition of the polypentapeptide of elastin and its analogues. Biopolymers. 1990;29:1699–706.

    Article  CAS  Google Scholar 

  12. Sallach RE, Cui W, Wen J, Martinez A, Conticello VP, Chaikof EL. Elastin-mimetic protein polymers capable of physical and chemical crosslinking. Biomaterials. 2009;30:409–22.

    Article  CAS  Google Scholar 

  13. Jagur-Grodzinskia J. Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol. 2010;21:27–47.

    Google Scholar 

  14. Kopecěk J. Smart and genetically engineered biomaterials and drug delivery systems. Eur J Pharm Sci. 2003;20:1–16.

    Article  Google Scholar 

  15. L’Heureux N, Dusserre N, Konig G, Victor B, Keire P, Wight TN, Chronos NA, Kyles AE, Gregory CR, Hoyt G, Robbins RC, McAllister TN. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med. 2006;12:361–5.

    Article  Google Scholar 

  16. Mitchell SL, Niklason LE. Requirements for growing tissue-engineered vascular grafts. Cardiovasc Pathol. 2003;12:59–64.

    Article  CAS  Google Scholar 

  17. Opitz F, Schenke-Layland K, Cohnert TU, Starcher B, Halbhuber KJ, Martin DP, Stock UA. Tissue engineering of aortic tissue: dire consequence of suboptimal elastic fiber synthesis in vivo. Cardiovasc Res. 2004;63:719–30.

    Article  CAS  Google Scholar 

  18. McMillan RA, Caran KL, Apkarian RP, Conticello VP. High-resolution topographic imaging of environmentally responsive, elastin-mimetic hydrogels. Macromolecules. 1999;32:9067–70.

    Article  CAS  Google Scholar 

  19. McHale MK, Setton LA, Chilkoti A. Synthesis and in vitro evaluation of enzymatically cross-linked elastin-like polypeptide gels for cartilaginous tissue repair. Tissue Eng. 2005;11(11–12):1768–79.

    Article  CAS  Google Scholar 

  20. Girotti A, Reguera J, Rodriguez-Cabello JC, Arias FJ, Alonso M, Testera AM. Design and bioproduction of a recombinant multi(bio)functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes. J Mater Sci Mater Med. 2004;15(4):479–84.

    Article  CAS  Google Scholar 

  21. Annabi N, Mithieux SM, Weiss AS, Dehghani F. The fabrication of elastin-based hydrogels using high pressure CO2. Biomaterials. 2009;30:1–7.

    Article  CAS  Google Scholar 

  22. Welsh ER, Tirrell DA. Engineering the extracellular matrix: a novel approach to polymeric biomaterials I. Control of the physical properties of artificial protein matrices designed to support adhesion of vascular endothelial cells. Biomacromolecules. 2000;1:23–30.

    Article  CAS  Google Scholar 

  23. Annabi N, Mithieux SM, Weiss AS, Dehghani F. Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO2. Biomaterials. 2010;31:1655–65.

    Article  CAS  Google Scholar 

  24. Martino M, Tamburro AM. Chemical synthesis of cross-linked poly(KGGVG), an elastin-like biopolymer. Biopolymers. 2001;59:29–37.

    Article  CAS  Google Scholar 

  25. Bellingham CM, Lillie MA, Gosline JM, Wright GM, Starcher BC, Bailey AJ, Woodhouse KA, Keeley FW. Recombinant human elastin polypeptides self-assemble into biomaterials with elastin-like properties. Biopolymers. 2003;70:445–55.

    Article  CAS  Google Scholar 

  26. Vieth S, Bellingham CM, Keeley FW, Hodge SM, Rousseau D. Microstructural and tensile properties of elastin-based polypeptides crosslinked with genipin and pyrroloquinoline quinone. Biopolymers. 2007;85(3):199–206.

    Article  CAS  Google Scholar 

  27. Di Zio K, Tirrell DA. Mechanical properties of artificial protein matrices engineered for control of cell and tissue behavior. Macromolecules. 2003;36:1553–8.

    Article  CAS  Google Scholar 

  28. McMillan RA, Conticello VP. Synthesis and characterization of elastin-mimetic protein gels derived from a well-defined polypeptide precursor. Macromolecules. 2000;33:4809–21.

    Article  CAS  Google Scholar 

  29. Trabbic-Carlson K, Setton LA, Chilkoti A. Swelling and mechanical behaviors of chemically cross-linked hydrogels of elastin-like polypeptides. Biomacromolecules. 2003;4:572–80.

    Article  CAS  Google Scholar 

  30. Lee J, Macosko CW, Urry DW. Elastomeric polypentapeptides cross-linked into matrixes and fibers. Biomacromolecules. 2001;2:170–9.

    Article  CAS  Google Scholar 

  31. Lim DW, Nettles DL, Setton LA, Chilkoti A. In Situ cross-linking of elastin-like polypeptide block copolymers for tissue repair. Biomacromolecules. 2008;9:222–30.

    Article  CAS  Google Scholar 

  32. Lim DW, Nettles DL, Setton LA, Chilkoti A. Rapid cross-linking of elastin-like polypeptides with (hydroxymethyl) phosphines in aqueous solution. Biomacromolecules. 2007;8:1463–70.

    Article  CAS  Google Scholar 

  33. Nowatzki PJ, Tirrell DA. Physical properties of artificial extracellular matrix protein films prepared by isocyanate crosslinking. Biomaterials. 2004;25:1261–7.

    Article  CAS  Google Scholar 

  34. Martin L, Alonso M, Girotti A, Arias FJ, Rodrıguez-Cabello JC. Synthesis and characterization of macroporous thermosensitive hydrogels from recombinant elastin-like polymers. Biomacromolecules. 2009;10:3015–22.

    Article  CAS  Google Scholar 

  35. Hrabchak C, Rouleau J, Moss I, Woodhouse K, Akens M, Bellingham C, Keeley F, Dennis M, Yee A. Assessment of biocompatibility and initial evaluation of genipin cross-linked elastin-like polypeptides in the treatment of an osteochondral knee defect in rabbits. Acta Biomater. 2010;6:2108–15.

    Article  CAS  Google Scholar 

  36. Leach JB, Wolinsky JB, Stone PJ, Wong JY. Crosslinked α-elastin biomaterials: towards a processable elastin mimetic scaffold. Acta Biomater. 2005;1:155–64.

    Article  Google Scholar 

  37. Nagapudi K, Brinkman WT, Leisen JE, Huang L, McMillan RA, Apkarian RP, Conticello VP, Chaikof EL. Photomediated solid-state cross-linking of an elastin-mimetic recombinant protein polymer. Macromolecules. 2002;35:1730–7.

    Article  CAS  Google Scholar 

  38. Fujimoto M, Okamoto K, Furuta M. Preparation of alpha-elastin nanoparticles by gamma irradiation. Radiat Phys chem. 2009;78:1046–8.

    Article  CAS  Google Scholar 

  39. Garcia Y, Hemantkumar N, Collighan R, Griffin M, Rodriguez-Cabello JC, Abhay P. In vitro characterization of a collagen scaffold enzymatically cross-linked with a tailored elastin-like polymer. Tissue Eng A. 2009;15(4):887–99.

    Article  CAS  Google Scholar 

  40. Bandiera A, Taglienti A, Micali F, Pani B, Tamaro M, Crescenzi V, Manzini G. Expression and characterization of human elastin repeat based temperature responsive protein polymers for biotechnological purposes. Biotechnol Appl Biochem. 2005;42(3):247–56.

    Article  CAS  Google Scholar 

  41. Martinuzzi M, Marchetti S, Bandiera A, Farè S, Tanzi MC. Towards molecular farming of a human elastin-like polymer in plants, society for Biomaterials 2011 annual meeting: Animating materials, April 13–16, 2011 Orlando, Florida, accepted for oral presentation.

  42. Bandiera A. 3D matrices of human elastin-like polypeptides and method of preparation thereof, WO/2010/119420, International Application No.: PCT/IB2010/051642, publication date 21.10.2010, applicant: Università degli Studi di Trieste, Italy.

  43. Socrates G. Infrared and raman characteristic group frequencies: tables and charts. 3rd Ed. London: Wiley; 2004.

  44. Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2002;43:3–12.

    Article  Google Scholar 

  45. Pankajakshan D, Agrawal DK. Scaffolds in tissue engineering of blood vessels. Can J Physiol Pharmacol. 2010;88(9):855–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was financed by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR), Italy, under PRIN Project 2007, funds to Prof. MC Tanzi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabrina Bozzini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozzini, S., Giuliano, L., Altomare, L. et al. Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering. J Mater Sci: Mater Med 22, 2641–2650 (2011). https://doi.org/10.1007/s10856-011-4451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4451-z

Keywords

Navigation