Skip to main content

Advertisement

Log in

Preparation and antimicrobial activity of poly (vinyl chloride)/gelatin/montmorillonite biocomposite films

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this study was using a novel antimicrobial thermoplastic plasticizer based on aliphatic anhydride derivative dodecenyl succinic anhydride (DSA) for blending poly (vinyl chloride), PVC, with gelatin in presence of montmorillonite (MMT) using Brabender via polymer melting technique. This anhydride-based plasticizer blended the membrane ingredients homogenously under melting process. The used plasticizer exhibited high performance antimicrobial potency for some biomedical and industrial applications. The prepared biocomposite films were evaluated for antimicrobial activity using agar disc diffusion method against gram-positive and gram-negative bacteria such as: Staphylococcus aureus (S. aureus), Klebsiella pneumonia (K. pneumonia), Bacillus cereus (B. cereus), Bacillus subtilis (B. subtilis) and Escherichia coli (E. coli). The majority of these biocomposites, except the plasticized PVC with DOP, have shown inhibitory effect at different concentrations (1.0–20) mg/ml against all above mentioned bacteria. However, C. albicans and A. niger were the most resistant strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Reference

  1. Sun Y, Sun G. Novel refreshable N-halamine polymeric biocides containing imidazolidin-4-one derivatives. J Appl Polym Sci. 2001;39:3348.

    Article  CAS  Google Scholar 

  2. Woo CLY, Yang ML, Yin HQ, Jaffer F, Mitelman MW, Santerre JP. Biological characterization of a novel biodegradable antimicrobial polymer synthesized with fluoroquinolones. J Biomed Mater Res. 2002;59:35.

    Article  CAS  Google Scholar 

  3. Sun Y, Sun G. Novel regenerable N-halamine polymeric biocides I: synthesis, characterization and antimicrobial activity of hydantoin-containing polymers. J Appl Polym Sci. 2001;80:2460.

    Article  CAS  Google Scholar 

  4. Dizman B, Easri MO, Mathias LJ. Synthesis and antimicrobial activities of new water-soluble bis-quaternary ammonium methacrylate polymers. J Appl Polym Sci. 2004;94:635.

    Article  CAS  Google Scholar 

  5. Meng N, Zhou NL, Zhang SQ, Shen J. Synthesis and antimicrobial activities of polymer/montmorillonite–chlorhexidine acetate nanocomposite films. Appl Clay Sci. 2009;42:667.

    Article  CAS  Google Scholar 

  6. Cakmak I, Ulukanli Z, Tuzcu M, Karabuga S, Genctav K. Synthesis and characterization of novel antimicrobial cationic polyelectrolyte’s. Eur Polym J. 2004;40:2373.

    Article  CAS  Google Scholar 

  7. Pita VJR, Sampio EEM, Monterro EEC. Mechanical properties evaluation of PVC/plasticizers and PVC/thermoplastic polyurethane blends from extrusion processing. Polym Testing. 2002;21:545.

    Article  CAS  Google Scholar 

  8. Brydson JA. Polymeric materials. 7th ed. London: Butterworths; 1989.

    Google Scholar 

  9. Ljungjvist N, Hjertberg T. Conducting polymer blends of poly (3-octylthiophene) and poly (vinyl chloride) and the influence of a plasticizer on the compatibility. Synth Mater. 1995;71:2251.

    Article  Google Scholar 

  10. Herrara P, Burghardt RC, Phillips TD. Adsorption of Salmonella enteritidis by cetylpyridinium-exchanged montmorillonite clays. Vet Microbial. 2000;74:259.

    Article  Google Scholar 

  11. Zhou YH, Xia MS, Ye Y, Hu CH. Antimicrobial ability of Cu2+ montmorillonite. Appl Clay Sci. 2004;27:215.

    Article  CAS  Google Scholar 

  12. Hu CH, Xia MS. Adsorption and antibacterial effect of copper-exchanged montmorillonite on Escherichia coli K88. Appl Clay Sci. 2006;31:180.

    Article  CAS  Google Scholar 

  13. Haroun AA, Gamal Eldeen A, Harding DRK. Preparation, characterization and in vitro biological study of biomimetic three-dimensional gelatin montmorillonite/cellulose scaffold for tissue engineering. J Mater Sci Mater Med. 2009;20:2527.

    Article  CAS  Google Scholar 

  14. Lopez P, Sanchez C, Battle R, Nern C. Development of flexible antimicrobial films as active agents. J Agric Food Chem. 2007;55:8814.

    Article  CAS  Google Scholar 

  15. Gomez J, Lopez DL, Lopez C, Gomez ME, Montero P. Biodegradable gelatin–chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 2010;27:889.

    Article  Google Scholar 

  16. Pena C, De Lacaba K, Eceiza A, Ruseckaite R, Mondragon I. Enhancing water repellence and mechanical properties of gelatin films by tannin addition. Bioresour Technol. 2010;101:6836.

    Article  CAS  Google Scholar 

  17. Haroun AA, Migonney V. Synthesis and in vitro evaluation of gelatin/hydroxyapatite graft copolymers to form bionanocomposites. Int J Biol Macromol. 2010;46:310.

    Article  CAS  Google Scholar 

  18. Haroun AA, El Toumy SA. Effect of natural polyphenols on physicochemical properties of crosslinked gelatin-based polymeric biocomposite. J Appl Polym Sci. 2010;116:2825.

    CAS  Google Scholar 

  19. Haroun AA, Beherei HH, Abd El-Ghaffar MA. Preparation, characterization, and in vitro application of composite films based on gelatin and collagen from natural resources. J Appl Polym Sci. 2010;116:2083.

    CAS  Google Scholar 

  20. Haroun AA. Preparation and characterization of biodegradable thermoplastic films based on collagen hydrolyzate. J Appl Polym Sci. 2010;115:3237.

    Article  Google Scholar 

  21. Sandhu HS, Khan SN, Suh DY, Boden SD. The properties of chitosan–gelatin membranes and scaffolds modified with hyaluronic acid by different methods. J Eur Spine. 2001;10:122.

    Article  Google Scholar 

  22. Cosentino S, Tuberoso CIG, Pisano B, Satta M, Mascia V, Arzedi E, Palmas F. In-vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Lett Appl Microbiol. 1999;28:130.

    Article  Google Scholar 

  23. Andrews JM. Determination of minimum inhibitory concentrations. J Antimicrob Chemother. 2001;48:5.

    Article  CAS  Google Scholar 

  24. Semsarzadeh MA, Mehrabzadeh M, Arabshahi SS. Dynamic mechanical behavior of the dioctyl phthalate plasticized polyvinyl chloride-epoxidized soya bean oil. Eur Polym J. 2002;38:351.

    Article  CAS  Google Scholar 

  25. Gorman SP, Mawhinney WM, Adair CG, Issouckis M. Confocal laser scanning microscopy of peritoneal catheter surfaces. J Med Microbiol. 1993;38:411.

    Article  CAS  Google Scholar 

  26. Jones DS, McGovern JG, Woolfson AD, Gorman SP. Role of physiological conditions in the oropharynx on the adherence of respiratory bacterial isolates to endotracheal tube poly (vinyl chloride). Biomaterials. 1997;18:503.

    Article  CAS  Google Scholar 

  27. Jones DS, McGovern JG, Adair CG, Woolfson AD, Gorman SP. Conditioning film and environmental effects on the adherence of Candida spp. to silicone and poly (vinyl chloride) biomaterials. J Mater Sci Mater Med. 2001;12:399.

    Article  CAS  Google Scholar 

  28. Weerkamp AH, Uyen HM, Busscher HJ. Effect of zeta potential and surface energy on bacterial adhesion to uncoated and saliva-coated human enamel and dentin. J Dental Res. 1988;67:1483.

    Article  CAS  Google Scholar 

  29. Busscher HJ, Sjollema J, Van der Mei HC. Relative importance of surface free energy as a measure of hydrophobicity in bacterial adhesion to solid surfaces. In: Doyle RJ, Rosenberg M, editors. Microbial cell surface hydrophobicity. Washington DC: American Society for Micobiology; 1990. p. 335.

    Google Scholar 

Download references

Acknowledgment

Authors wish to thank Center of Molecular and Macromolecular studies, Polish Academy of Sciences, Poland, for generous assistance to carry out some experiments (2DXRD) in this study during the scientific visit of one of the author (Ahmed A. Haroun).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Haroun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haroun, A.A., Ahmed, E.F. & Abd El-Ghaffar, M.A. Preparation and antimicrobial activity of poly (vinyl chloride)/gelatin/montmorillonite biocomposite films. J Mater Sci: Mater Med 22, 2545–2553 (2011). https://doi.org/10.1007/s10856-011-4437-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4437-x

Keywords

Navigation