Advertisement

Journal of Materials Science: Materials in Medicine

, Volume 22, Issue 11, pp 2437–2447 | Cite as

Hydroxyapatite coating on magnesium with MgF2 interlayer for enhanced corrosion resistance and biocompatibility

  • Ji-Hoon Jo
  • Bong-Gyu Kang
  • Kwang-Seon Shin
  • Hyoun-Ee Kim
  • Byung-Dong Hahn
  • Dong-Soo Park
  • Young-Hag Koh
Article

Abstract

Hydroxyapatite (HA) was coated onto pure magnesium (Mg) with an MgF2 interlayer in order to reduce the surface corrosion rate and enhance the biocompatibility. Both MgF2 and HA were successfully coated in sequence with good adhesion properties using the fluoride conversion coating and aerosol deposition techniques, respectively. In a simulated body fluid (SBF), the double layer coating remarkably enhanced the corrosion resistance of the coated Mg specimen. The in vitro cellular responses of the MC3T3-E1 pre-osteoblasts were examined using a cell proliferation assay and an alkaline phosphatase (ALP) assay, and these results demonstrated that the double coating layer also enhanced cell proliferation and differentiation levels. In the in vivo study, the HA/MgF2 coated Mg corroded less than the bare Mg and had a higher bone-to-implant contact (BIC) ratio in the cortical bone area of the rabbit femora 4 weeks after implantation. These in vitro and in vivo results suggested that the HA coated Mg with the MgF2 interlayer could be used as a potential candidate for biodegradable implant materials.

Keywords

Poly Lactic Acid Coating Layer Simulated Body Fluid MgF2 Immersion Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This research was supported by WCU (World Class University) project through National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R31-2008-000-10075-0) and by the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea.

References

  1. 1.
    Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.CrossRefGoogle Scholar
  2. 2.
    Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev. 2006;12:301–47.CrossRefGoogle Scholar
  3. 3.
    Chiu KY, Wong MH, Cheng FT, Man HC. Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surf Coat Tech. 2007;202:590–8.CrossRefGoogle Scholar
  4. 4.
    Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27:1728–34.CrossRefGoogle Scholar
  5. 5.
    Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res. 2002;62:175–84.CrossRefGoogle Scholar
  6. 6.
    Zeng RC, Dietzel W, Witte F, Hort N, Blawert C. Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater. 2008;10:B3–14.CrossRefGoogle Scholar
  7. 7.
    Song GL, Atrens A. Corrosion mechanisms of magnesium alloys. Adv Eng Mater. 1999;1:11–33.CrossRefGoogle Scholar
  8. 8.
    Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26:3557–63.CrossRefGoogle Scholar
  9. 9.
    Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, et al. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27:1013–8.CrossRefGoogle Scholar
  10. 10.
    Song GL. Control of biodegradation of biocompatable magnesium alloys. Corros Sci. 2007;49:1696–701.CrossRefGoogle Scholar
  11. 11.
    Wang H, Estrin Y, Fu H, Song G, Zuberova Z. The effect of pre-processing and grain structure on the bio-corrosion and fatigue resistance of magnesium alloy AZ31. Adv Eng Mater. 2007;9:967–72.CrossRefGoogle Scholar
  12. 12.
    Xu LP, Yu GN, Zhang E, Pan F, Yang K. In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. J Biomed Mater Res A. 2007;83A:703–11.CrossRefGoogle Scholar
  13. 13.
    Li ZJ, Gu XN, Lou SQ, Zheng YF. The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials. 2008;29:1329–44.CrossRefGoogle Scholar
  14. 14.
    Pietak A, Mahoney P, Dias GJ, Staiger MP. Bone-like matrix formation on magnesium and magnesium alloys. J Mater Sci-Mater M. 2008;19:407–15.CrossRefGoogle Scholar
  15. 15.
    Kannan MB, Raman RKS. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials. 2008;29:2306–14.CrossRefGoogle Scholar
  16. 16.
    Xu LP, Zhang EL, Yin DS, Zeng SY, Yang K. In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application. J Mater Sci-Mater M. 2008;19:1017–25.CrossRefGoogle Scholar
  17. 17.
    Gu XN, Zheng YF, Cheng Y, Zhong SP, Xi TF. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials. 2009;30:484–98.CrossRefGoogle Scholar
  18. 18.
    Hanzi AC, Gunde P, Schinhammer M, Uggowitzer PJ. On the biodegradation performance of an Mg-Y-RE alloy with various surface conditions in simulated body fluid. Acta Biomater. 2009;5:162–71.CrossRefGoogle Scholar
  19. 19.
    Zhang EL, Xu LP, Yu GN, Pan F, Yang K. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res A. 2009;90A:882–93.CrossRefGoogle Scholar
  20. 20.
    Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, et al. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid St M. 2008;12:63–72.CrossRefGoogle Scholar
  21. 21.
    Song GL, Song SZ. A possible biodegradable magnesium implant material. Adv Eng Mater. 2007;9:298–302.CrossRefGoogle Scholar
  22. 22.
    Song YW, Shan DY, Han EH. Electrodeposition of hydroxyapatite coating on AZ91D magnesium alloy for biomaterial application. Mater Lett. 2008;62:3276–9.CrossRefGoogle Scholar
  23. 23.
    Xu LP, Zhang EL, Yang K. Phosphating treatment and corrosion properties of Mg-Mn-Zn alloy for biomedical application. J Mater Sci-Mater M. 2009;20:859–67.CrossRefGoogle Scholar
  24. 24.
    Zhang E, Xu LP, Yang K. Formation by ion plating of Ti-coating on pure Mg for biomedical applications. Scripta Mater. 2005;53:523–7.CrossRefGoogle Scholar
  25. 25.
    Gray-Munro JE, Seguin C, Strong M. Influence of surface modification on the in vitro corrosion rate of magnesium alloy AZ31. J Biomed Mater Res A. 2009;91A:221–30.CrossRefGoogle Scholar
  26. 26.
    Wen CL, Guan SK, Peng L, Ren CX, Wang X, Hu ZH. Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications. Appl Surf Sci. 2009;255:6433–8.CrossRefGoogle Scholar
  27. 27.
    Geng F, Tan LL, Jin XX, Yang JY, Yang K. The preparation, cytocompatibility, and in vitro biodegradation study of pure beta-TCP on magnesium. J Mater Sci-Mater M. 2009;20:1149–57.CrossRefGoogle Scholar
  28. 28.
    Zhang YJ, Zhang GZ, Wei M. Controlling the biodegradation rate of magnesium using biomimetic apatite coating. J Biomed Mater Res B. 2009;89B:408–14.CrossRefGoogle Scholar
  29. 29.
    Wang Y, Wei M, Gao JC. Improve corrosion resistance of magnesium in simulated body fluid by dicalcium phosphate dihydrate coating. Mat Sci Eng C-Bio S. 2009;29:1311–6.CrossRefGoogle Scholar
  30. 30.
    Xu LP, Pan F, Yu GN, Yang L, Zhang EL, Yang K. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials. 2009;30:1512–23.CrossRefGoogle Scholar
  31. 31.
    Lakstein D, Kopelovitch W, Barkay Z, Bahaa M, Hendel D, Eliaz N. Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti-6Al-4V implants in rabbits. Acta Biomater. 2009;5:2258–69.CrossRefGoogle Scholar
  32. 32.
    Bigi A, Fini M, Bracci B, Boanini E, Torricelli P, GiavareSi G, et al. The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model. Biomaterials. 2008;29:1730–6.CrossRefGoogle Scholar
  33. 33.
    Akedo J. Aerosol deposition of ceramic thick films at room temperature: densification mechanism of ceramic layers. J Am Ceram Soc. 2006;89:1834–9.CrossRefGoogle Scholar
  34. 34.
    Hahn BD, Park DS, Choi JJ, Ryu J, Yoon WH, Kim KH, et al. Dense nanostructured hydroxyapatite coating on titanium by aerosol deposition. J Am Ceram Soc. 2009;92:683–7.CrossRefGoogle Scholar
  35. 35.
    Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.CrossRefGoogle Scholar
  36. 36.
    Hahn BD, Lee JM, Park DS, Choi JJ, Ryu J, Yoon WH, et al. Aerosol deposition of silicon-substituted hydroxyapatite coatings for biomedical applications. Thin Solid Films. 2010;518:2194–9.CrossRefGoogle Scholar
  37. 37.
    Gineste L, Gineste M, Ranz X, Ellefterion A, Guilhem A, Rouquet N, et al. Degradation of hydroxylapatite, fluorapatite, and fluorhydroxyapatite coatings of dental implants in dogs. J Biomed Mater Res. 1999;48:224–34.CrossRefGoogle Scholar
  38. 38.
    Guo XX, Xu SL, Zhao LL, Lu W, Zhang FZ, Evans DG, et al. One-step hydrothermal crystallization of a layered double hydroxide/alumina bilayer film on aluminum and its corrosion resistance properties. Langmuir. 2009;25:9894–7.CrossRefGoogle Scholar
  39. 39.
    Dearnley PA. A brief review of test methodologies for surface-engineered biomedical implant alloys. Surf Coat Tech. 2005;198:483–90.CrossRefGoogle Scholar
  40. 40.
    Meyer U, Buchter A, Wiesmann HP, Joos U, Jones DB. Basic reactions of osteoblasts on structured material surfaces. Eur Cell Mater. 2005;9:39–49.Google Scholar
  41. 41.
    Kim HW, Koh YH, Li LH, Lee S, Kim HE. Hydroxyapatite coating on titanium substrate with Titania buffer layer processed by sol-gel method. Biomaterials. 2004;25:2533–8.CrossRefGoogle Scholar
  42. 42.
    Hahn BD, Lee JM, Park DS, Choi JJ, Ryu J, Yoon WH, et al. Mechanical and in vitro biological performances of hydroxyapatite-carbon nanotube composite coatings deposited on Ti by aerosol deposition. Acta Biomater. 2009;5:3205–14.CrossRefGoogle Scholar
  43. 43.
    Ramires PA, Wennerberg A, Johansson CB, Cosentino F, Tundo S, Milella E. Biological behavior of sol-gel coated dental implants. J Mater Sci-Mater M. 2003;14:539–45.CrossRefGoogle Scholar
  44. 44.
    Faeda RS, Tavares HS, Sartori R, Guastaldi AC, Marcantonio E. Biological performance of chemical hydroxyapatite coating associated with implant surface modification by laser beam: biomechanical study in rabbit tibias. J Oral Maxil Surg. 2009;67:1706–15.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ji-Hoon Jo
    • 1
  • Bong-Gyu Kang
    • 1
  • Kwang-Seon Shin
    • 1
  • Hyoun-Ee Kim
    • 1
  • Byung-Dong Hahn
    • 2
  • Dong-Soo Park
    • 2
  • Young-Hag Koh
    • 3
  1. 1.WCU Hybrid Materials Program, Department of Materials Science and EngineeringSeoul National UniversitySeoulKorea
  2. 2.Functional Ceramics Group, Functional Materials DivisionKorea Institute of Materials Science (KIMS)Changwon, Gyeong-NamRepublic of Korea
  3. 3.Department of Dental Laboratory Science and EngineeringKorea UniversitySeoulRepublic of Korea

Personalised recommendations