Skip to main content
Log in

In vitro degradation behaviour of a friction stir processed magnesium alloy

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, the in vitro degradation behaviour of a friction stir processed AZ31 magnesium alloy was investigated. Electrochemical experiments in simulated body fluid suggest that friction stir processing marginally enhances the degradation resistance of the alloy, which could be attributed to the dissolution of secondary phase particles. Homogenisation of the microstructure reduces galvanic corrosion. It is envisaged that the beneficial effect would be more pronounced for magnesium alloys which contain high volume fraction of galvanic corrosion inducing secondary phase particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F. Degradable biomaterials based on magnesium corrosion. Curr Opinion Solid State Mater Sci. 2008;12:63–72.

    Article  CAS  Google Scholar 

  2. Staiger PM, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials. Biomaterials. 2006;27:1728–34.

    Article  CAS  Google Scholar 

  3. Bobby Kannan M, Singh Raman RK. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid. Biomaterials. 2008;29:2306–14.

    Article  Google Scholar 

  4. Bobby Kannan M, Singh Raman RK. Evaluating the stress corrosion cracking susceptibility of Mg-Al-Zn alloy in modified-simulated body fluid for orthopaedic implant application. Scripta Mater. 2008;59:175–8.

    Article  Google Scholar 

  5. Bobby Kannan M. Influence of microstructure on the in vitro degradation behaviour of magnesium alloy. Mater Lett. 2010;64:739–42.

    Article  Google Scholar 

  6. Walter R, Bobby Kannan M. In vitro degradation behaviour of WE54 magnesium alloy in simulated body fluid. Mater Lett. 2010;65:748–50.

    Article  Google Scholar 

  7. Bobby Kannan M, He Y, Sandham A. Calcium phosphate deposition on magnesium alloy for bio-implant applications. Mater Sci Forum. 2010;654–656:2196–9.

    Article  Google Scholar 

  8. Bobby Kannan M, Singh Raman RK. A mechanistic study of in vitro degradation of magnesium alloy using electrochemical techniques. J Biomed Mater Res Part A. 2010;93A:1050–5.

    CAS  Google Scholar 

  9. Chiu KY, Wong MH, Cheng FT, Man HC. Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surf Coat Technol. 2007;202:590–8.

    Article  CAS  Google Scholar 

  10. Ma ZY, Pilchak AL, Juhas MC, Willams JC. Microstructural refinement and property enhancement of cast light alloys via friction stir processing. Scripta Mater. 2008;58:361–6.

    Article  CAS  Google Scholar 

  11. Bobby Kannan M, Dietzel W, Zeng R, Zettler R, dos Santos JF. A study on the SCC susceptibility of friction stir welded AZ31 Mg sheet. Mater Sci Eng A. 2007;460–461:243–50.

    Google Scholar 

  12. Ni DR, Xiao BL, Ma ZY, Qiao YX, Zheng YG. Corrosion properties of friction-stir processed cast NiAl bronze. Corros Sci. 2010;52:1610–7.

    Article  CAS  Google Scholar 

  13. Oyane A, Kim H, Furuya T, Kokubo T, Miyazaki T, Nakamura TJ. Preparation and assessment of revised simulated body fluids. Biomed Mater Res A. 2003;65:188–95.

    Google Scholar 

  14. Park SHC, Sato YS, Kokawa H. Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test. Scripta Mater. 2003;49:161–6.

    Article  CAS  Google Scholar 

  15. Xunhong W, Kuaishe W. Microstructure and properties of friction stir butt-welded AZ31 magnesium alloy. Mater Sci Eng A. 2006;431:114–7.

    Article  Google Scholar 

  16. Datong Z, Suzuki M, Maruyama K. Microstructural evolution of a heat-resistant magnesium alloy due to friction stir welding. Scripta Mater. 2005;52:899–903.

    Article  Google Scholar 

  17. Fernández-Sánchez C, McNeil CJ, Rawson K. Electrochemical impedance spectroscopy studies of polymer degradation: application to biosensor development. Trends Anal Chem. 2005;24:37–48.

    Article  Google Scholar 

  18. Baril G, Pebere N. The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions. Corros Sci. 2001;43:471–84.

    Article  CAS  Google Scholar 

  19. Jin S, Amira S, Ghali E. Electrochemical impedance spectroscopy evaluation of the corrosion behaviour of die cast and tixocast AXJ530 Mg alloy in chloride solution. Adv Eng Mater. 2007;9:75–83.

    Article  CAS  Google Scholar 

  20. Zhao MC, Liu M, Song G, Atrens A. Influence of the β-phase morphology on the corrosion of the Mg Alloy AZ91. Corros Sci. 2008;50:1939–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to J.F. dos Santos for providing the friction stir processed samples. Thanks are also due to R. Walter and E.Koc for their help in the electrochemical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bobby Kannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobby Kannan, M., Dietzel, W. & Zettler, R. In vitro degradation behaviour of a friction stir processed magnesium alloy. J Mater Sci: Mater Med 22, 2397–2401 (2011). https://doi.org/10.1007/s10856-011-4429-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4429-x

Keywords

Navigation