Transverse mechanical properties of collagen fibers from nanoindentation

  • Katerina E. Aifantis
  • Sanjiv Shrivastava
  • Gregory M. Odegard


The mechanical properties of collagenous tissues, such as tendon and ligaments, are of particular interest as they are found extensively in the human body. In the present study the transverse mechanical properties of collagen fibers are reported for the first time. The elastic modulus was found to be 63 ± 4 MPa, while the viscosity was estimated to be \( 14\;{\text{GPa}} \le \eta \le 56\;{\text{GPa}}\;{\text{s}} \). Comparison with similar data in the literature, for bulk tendon and collagen fibrils, suggests that the apparent modulus of a network of interconnected building blocks is reduced as compared to the modulus of the individual building blocks; in particular E tendon < E fiber < E fibril; this is due to the fact that as the scale of the microstructure increases (i) slippage and sliding between the respective building blocks (fibrils or fibers) increases, (ii) the volume fraction of the stiff collagen proteins decreases.


Elastic Modulus Atomic Force Microscopy Fibril Collagen Fiber Collagen Fibril 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



KEA and SS are grateful for support from KEA’s European Research Council Starting Grant, MINATRAN-211166. The authors are also thankful to Ms. Betty for her assistance in the experiments.


  1. 1.
    Moore SM, McMahon PJ, Debski PE. Bi-directional mechanical properties of the axillary pouch of the glenohumeral capsule: implications for modeling and surgical repair. J Biomech Eng Trans ASME. 2004;126(2):284–8.CrossRefGoogle Scholar
  2. 2.
    Moore SM, McMahon P, Azemi E, Debski R. Bi-directional mechanical properties of the posterior region of the glenohumeral capsule. J Biomech. 2005;38(6):1365–9.CrossRefGoogle Scholar
  3. 3.
    Quapp KM, Weiss JA. Material characterization of human medial collateral ligament. J Biomech Eng Trans ASME. 1998;120(6):757–63.CrossRefGoogle Scholar
  4. 4.
    Stabile KJ, Pfaeffle J, Weiss JA, Fischer K, Tomaino MM. Bi-directional mechanical properties of the human forearm interosseous ligament. J Orthop Res. 2004;22(3):607–12.CrossRefGoogle Scholar
  5. 5.
    Yamamoto E, Hayashi K, Yamamoto N. Effects of stress shielding on the transverse mechanical properties of rabbit patellar tendons. J Biomech Eng Trans ASME. 2000;122(6):608–14.CrossRefGoogle Scholar
  6. 6.
    Lynch HA. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon. J Biomech Eng Trans ASME. 2003;125(5):726–31.CrossRefGoogle Scholar
  7. 7.
    Chung K-H, Bhadriraju K, Spurlin TA, Cook RF, Plant AL. Nanomechanical properties of thin films of type I collagen fibrils. Langmuir. 2010;26(5):3629–36.CrossRefGoogle Scholar
  8. 8.
    Wenger MPE, Bozec L, Horton MA, Mesquida P. Mechanical properties of collagen fibrils. Biophys J. 2007;93:1255–63.CrossRefGoogle Scholar
  9. 9.
    An K-N, Sun Y-L, Luo Z-P. Flexibility of type I collagen and mechanical property of connective tissue. Biorheology. 2004;41:239–46.Google Scholar
  10. 10.
    Oliver WC, Pharr GM. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7(6):1564–83.CrossRefGoogle Scholar
  11. 11.
    Odegard GM, Gates TS, Herring HM. Characterization of viscoelastic properties of polymeric materials through nanoindentation. Exper Mech. 2005;45(2):130–6.CrossRefGoogle Scholar
  12. 12.
    Oyen ML. Sensitivity of polymer nanoindentation creep measurements to experimental variables. Acta Mater. 2007;55(11):3633–9.CrossRefGoogle Scholar
  13. 13.
    Hauch KN, Oyen ML, Odegard GM, Haut-Donahue HL. Nanoindentation of the insertional zones of human meniscal attachments into underlying bone. J Mech Behav Biomed Mater. 2009;2(4):339–47.CrossRefGoogle Scholar
  14. 14.
    Ebenstein DM, Pruitt LA. Nanoindentation of soft hydrated materials for application to vascular tissues. J Biomed Mater Res Part A. 2004;69A:222–32.CrossRefGoogle Scholar
  15. 15.
    Chaudhry B, Ashton H, Muhamed A, Yost M, Bull S, Frankel D. Nanoscale viscoelastic properties of an aligned collagen scaffold. J Mater Sci: Mater Med. 2009;20:257–63.CrossRefGoogle Scholar
  16. 16.
    Feng G, Ngan AHW. Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J Mater Res. 2002;17(3):660–8.CrossRefGoogle Scholar
  17. 17.
    Tang B, Ngan AHW. Accurate measurement of tip—sample contact size during nanoindentation of viscoelastic materials. J Mater Res. 2003;18:1141–8.CrossRefGoogle Scholar
  18. 18.
    Dowling NE. Mechanical behavior of materials: engineering methods for deformation, fracture, and fatigue. 3rd ed. Upper Saddle River, NJ: Pearson Prentice Hall; 2007.Google Scholar
  19. 19.
    Shakai M, Simizu S. Indentation rheometry for glass-forming metals. J Non-Cryst Solids. 2001;282:236–47.CrossRefGoogle Scholar
  20. 20.
    Gupta S, Carrillo F, Li C, Pruitt L, Puttlitz C. Adhesive forces significantly affect elastic modulus determination of soft polymeric materials in nanoindentation. Mater Lett. 2007;61:448–51.CrossRefGoogle Scholar
  21. 21.
    Pioletti DP, Rakotomanana LR, Benvenuti J-F, Leyvraz P-F. Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. J Biomech. 1998;31:753–7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Katerina E. Aifantis
    • 1
    • 2
  • Sanjiv Shrivastava
    • 1
    • 3
  • Gregory M. Odegard
    • 4
  1. 1.Laboratory of MechanicsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of PhysicsMichigan Technological UniversityHoughtonUSA
  3. 3.Department of PhysicsUniversity of the WitwatersrandWitsSouth Africa
  4. 4.Mechanical EngineeringMichigan Technological UniversityHoughtonUSA

Personalised recommendations