Skip to main content

Advertisement

Log in

Contributions of microstructure and chemical composition to the mechanical properties of dentin

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The influence of microstructural variations and chemical composition to the mechanical properties and apparent flaw sensitivity of dentin were evaluated. Rectangular beams (N = 80) of the deep and superficial coronal dentin were prepared from virgin 3rd molars; twenty beams of each region were nominally flaw free and the remainder possessed a single “surface flaw” via a Vickers indentation. Mechanical properties were estimated in four-point flexure and examined using Weibull statistics. Fourier Transform Infrared Microspectroscopy in Reflectance Mode (FTIR-RM) was used to quantify the relative mineral to collagen ratios. Results showed that the average flexural strength, and strain and energy to fracture of the deep dentin beams were significantly lower (P < 0.005) than for the superficial dentin. While the deep dentin exhibited the highest mineral/collagen ratio and lowest damage tolerance, there was no significant effect of the surface flaws. Weibull analyses suggest that deep dentin possesses a larger distribution of intrinsic flaw sizes that contributes to the location dependence in strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. K.O. Lee Model S3818EL, Aberdeen, SD.

  2. HMV 2000, Micro Hardness Tester, Shimadzu, Nakagyo-ku, Kyoto, Japan.

  3. EnduraTEC Model ELF 3200, Minnetonka, MN.

  4. Jeol JSM 5600, Peabody, MA.

  5. Nic-Plan, Nicolet Instrumentations Inc. Madison, WI.

  6. Magna-IR 550, Nicolet Instrumentations Inc. Madison, WI.

  7. ISys software package (Spectral Dimensions Inc., Olney, MD).

References

  1. Marshall DB, Evans AG, Khuri Yakub BT, Tien JW, Kino GS. Nature of machining damage in brittle materials. Proc Roy Soc Lond Ser A Math Phys Sci. 1983;385(1789):461–75.

    Article  Google Scholar 

  2. Xu HHK, Padture NP, Jahanmir S. Effect of microstructure on material-removal mechanisms and damage tolerance in abrasive machining of silicon carbide. J Am Cer Soc. 1995;78(9):2443–8.

    Article  CAS  Google Scholar 

  3. Quinn GD, Ives LK, Jahanmir S. On the nature of machining cracks in ground ceramics. Part I: SRBSN strengths and fractographic analysis. Mach Sci Technol. 2005;9(2):169–210.

    Article  CAS  Google Scholar 

  4. Quinn GD, Ives LK, Jahanmir S. On the nature of machining cracks in ground ceramics: part II, comparison to other silicon nitrides and damage maps. Mach Sci Technol. 2005;9(2):211–37.

    Article  CAS  Google Scholar 

  5. Sehy C, Drummond JL. Micro-cracking of tooth structure. Am J Dent. 2004;17(5):378–80.

    Google Scholar 

  6. Yan J, Taskonak B, Mecholsky JJ. Fractography and fracture toughness of human dentin. J Mech Behav Biomed Mater. 2009;2(5):478–84.

    Article  CAS  Google Scholar 

  7. Staninec M, Meshkin N, Manesh SK, Ritchie RO, Fried D. Weakening of dentin from cracks resulting from laser irradiation. Dent Mater. 2009;25(4):520–5.

    Article  CAS  Google Scholar 

  8. Nalla RK, Imbeni V, Kinney JH, Staninec M, Marshall SJ, Ritchie RO. In vitro fatigue behavior of human dentin with implications for life prediction. J Biomed Mater Res. 2003;66(1):10–20.

    Article  CAS  Google Scholar 

  9. Arola D, Reprogel R. Tubule orientation and the fatigue strength of human dentin. Biomaterials. 2006;27(9):2131–40.

    Article  CAS  Google Scholar 

  10. Arola D, Reprogel R. Effects of aging on the mechanical behavior of human dentin. Biomaterials. 2005;26(18):4051–61.

    Article  CAS  Google Scholar 

  11. Arola D, Huang MP, Sultan MB. The failure of amalgam restorations due to cyclic fatigue crack growth. J Mat Sci Mater Med. 1999;10(6):319–27.

    Article  CAS  Google Scholar 

  12. Bajaj D, Sundaram N, Arola D. An examination of fatigue striations in human dentin: in vitro and in vivo. J Biomed Mater Res Appl Biomat. 2008;85(1):149–59.

    Article  CAS  Google Scholar 

  13. Staninec M, Marshall GW, Hilton JF, Pashley DH, Gansky SA, Marshall SJ, Kinney JH. Ultimate tensile strength of dentin: evidence for a damage mechanics approach to dentin failure. J Biomed Mater Res. 2002;63(3):342–5.

    Article  CAS  Google Scholar 

  14. Kinney JH, Marshall SJ, Marshall GW. The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. Crit Rev Oral Biol Med. 2003;14(1):13–29.

    Article  CAS  Google Scholar 

  15. ISO Standard 18756 (2003) Fine ceramics (advanced ceramics, advanced. technical ceramics)-determination of fracture. Toughness of monolithic ceramics at room temperature by the surface crack in flexure (SCF) method.

  16. Scherrer SS, Kelly JR, Quinn GD, Xu K. Fracture toughness (KIc) of a dental porcelain determined by fractographic analysis. Dent Mater. 1999;15(5):342–8.

    Article  CAS  Google Scholar 

  17. Peterson RE. Stress concentration factors. New York: Wiley; 1974.

    Google Scholar 

  18. Weibull W. A statistical distribution function of wide applicability. J Appl Mech. 1951;18:293–7.

    Google Scholar 

  19. Davies IJ. Best estimate of Weibull modulus obtained using linear least squares analysis: an improved empirical correction factor. J Mat Sci. 2004;39(4):1441–4.

    Article  CAS  Google Scholar 

  20. Tesch W, Eidelman N, Roschger P, Goldenberg F, Klaushofer K, Fratzl P. Graded microstructure and mechanical properties of human crown dentin. Calcif Tissue Int. 2001;69(3):147–57.

    Article  CAS  Google Scholar 

  21. Eidelman N, Simon CG. Characterization of combinatorial polymer blend composition gradients by FTIR Microspectroscopy. J Res Natl Inst Stand Technol. 2004;109(2):219–31.

    CAS  Google Scholar 

  22. Chalmers JM, Everall NJ, Ellison S. Specular reflectance: a convenient tool for polymer characterisation by FTIR-microscopy? Micron. 1996;27(5):315–28.

    Article  CAS  Google Scholar 

  23. Pashley D, Okabe A, Parham P. The relationship between dentin microhardness and tubule density. Endod Dent Traumatol. 1985;1(5):176–9.

    Article  CAS  Google Scholar 

  24. Kinney JH, Balooch M, Marshall SJ, Marshall GW Jr, Weihs TP. Atomic force microscope measurements of the hardness and elasticity of peritubular and intertubular human dentin. J Biomech Eng. 1996;118(1):133–5.

    Article  CAS  Google Scholar 

  25. Fuentes V, Toledano M, Osorio R, Carvalho RM. Microhardness of superficial and deep sound human dentin. J Biomed Mater Res A. 2003;66(4):850–3.

    Article  Google Scholar 

  26. Carvalho RM, Fernandes CA, Villanueva R, Wang L, Pashley DH. Tensile strength of human dentin as a function of tubule orientation and density. J Adhes Dent. 2001;3(4):309–14.

    CAS  Google Scholar 

  27. Inoue S, Pereira PN, Kawamoto C, Nakajima M, Koshiro K, Tagami J, Carvalho RM, Pashley DH, Sano H. Effect of depth and tubule direction on ultimate tensile strength of human coronal dentin. Dent Mater J. 2003;22(1):39–47.

    Google Scholar 

  28. Giannini M, Soares CJ, de Carvalho RM. Ultimate tensile strength of tooth structures. Dent Mater. 2004;20(4):322–9.

    Article  Google Scholar 

  29. Konishi N, Watanabe LG, Hilton JF, Marshall GW, Marshall SJ, Staninec M. Dentin shear strength: effect of distance from the pulp. Dent Mater. 2002;18(7):516–20.

    Article  CAS  Google Scholar 

  30. Watanabe LG, Marshall GW Jr, Marshall SJ. Dentin shear strength: effects of tubule orientation and intratooth location. Dent Mater. 1996;12(2):109–15.

    Article  CAS  Google Scholar 

  31. Nalla RK, Kinney JH, Ritchie RO. On the fracture of human dentin: is it stress- or strain-controlled? J Biomed Mater Res A. 2003;67(2):484–95.

    Article  CAS  Google Scholar 

  32. Lertchirakarn V, Palamara JE, Messer HH. Anisotropy of tensile strength of root dentin. J Dent Res. 2001;80(2):453–6.

    Article  CAS  Google Scholar 

  33. Trustrum K, Jayatilaka ADe-S. Applicability of Weibull analysis for brittle materials. J Mat Sci. 1983;18(9):2765–70.

    Article  Google Scholar 

  34. Dickens SH, Cho BH. Interpretation of bond failure through conversion and residual solvent measurements and Weibull analyses of flexural and microtensile bond strengths of bonding agents. Dent Mater. 2005;21(4):354–64.

    Article  CAS  Google Scholar 

  35. Burrow MF, Thomas D, Swain MV, Tyas MJ. Analysis of tensile bond strengths using Weibull statistics. Biomaterials. 2004;25(20):5031–5.

    Article  CAS  Google Scholar 

  36. Xu HHK, Kelly JR, Jahanmir S, Thompson VP, Rekow ED. Enamel subsurface damage due to tooth preparation with diamonds. J Dent Res. 1997;76(10):1698–706.

    Article  CAS  Google Scholar 

  37. Banerjee A, Kidd EA, Watson TF. Scanning electron microscopic observations of human dentine after mechanical caries excavation. J Dent. 2000;28(3):179–86.

    Article  CAS  Google Scholar 

  38. Mannocci F, Pilecki P, Bertelli E, Watson TF. Density of dentinal tubules affects the tensile strength of root dentin. Dent Mater. 2004;20(3):293–6.

    Article  Google Scholar 

  39. Pashley DH. Smear layer: physiological considerations. Oper Dent. 1984;suppl 3:13–29.

    Google Scholar 

  40. Miguez PA, Pereira PN, Atsawasuwan P, Yamauchi M. Collagen cross-linking and ultimate tensile strength in dentin. J Dent Res. 2004;83(10):807–10.

    Article  CAS  Google Scholar 

  41. Kinney JH, Nalla RK, Pople JA, Breunig TM, Ritchie RO. Age-related transparent root dentin: mineral concentration, crystallite size, and mechanical properties. Biomaterials. 2005;26(16):3363–76.

    Article  CAS  Google Scholar 

  42. Arola D, Bajaj D, Ivancik J, Majd H, Zhang D. Fatigue of biomaterials: hard tissues. Int J Fat. 2010;32(9):1400–12.

    Article  Google Scholar 

  43. Jameson MW, Hood JA, Tidmarsh BG. The effects of dehydration and rehydration on some mechanical properties of human dentine. J Biomech. 1993;26(9):1055–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by an award from the National Institutes of Health (NIDCR DE016904) and the National Science Foundation (BES 0238237). Aftin Ross, Heon Ryou and Nikhil Amin were undergraduate students during the course of the research and Ms Ross acknowledges support from the MARC U-STAR program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Arola.

Additional information

Support for the following investigation was provided by the National Institutes of Health (NIDCR R01DE016904) and the National Science Foundation (BES 0238237).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryou, H., Amin, N., Ross, A. et al. Contributions of microstructure and chemical composition to the mechanical properties of dentin. J Mater Sci: Mater Med 22, 1127–1135 (2011). https://doi.org/10.1007/s10856-011-4293-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-011-4293-8

Keywords

Navigation