Advertisement

Alkaline degradation study of linear and network poly(ε-caprolactone)

  • J. M. Meseguer-Dueñas
  • J. Más-Estellés
  • I. Castilla-Cortázar
  • J. L. Escobar Ivirico
  • A. Vidaurre
Article

Abstract

Alkaline hydrolysis of a polycaprolactone (PCL) network obtained by photopolymerization of a PCL macromer was investigated. The PCL macromer was obtained by the reaction of PCL diol with methacrylic anhydride. Degradation of PCL network is much faster than linear PCL; the weight loss rate is approximately constant until it reaches around 70%, which happens after approximately 60 h in PCL network and 600 h in linear PCL. Calorimetric results show no changes in crystallinity throughout degradation, suggesting that it takes place in the crystalline and amorphous phases simultaneously. Scanning electron microscopy microphotographs indicate that degradation is produced by a different erosion mechanism in both kinds of samples. The more hydrophilic network PCL would follow a bulk-erosion mechanism, whereas linear PCL would follow a surface-erosion mechanism. Mechanical testing of degraded samples shows a decline in mechanical properties due to changes in sample porosity as a consequence of the degradation process.

Keywords

Degradation Time Alkaline Degradation Heating Scan Compression Ramp Trimethylene Carbonate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to acknowledge the support of the Spanish Ministry of Science and Education through the MEC DPI2007-65601-C03-03 Project. The authors also would like to acknowledge the support of the CIBER-BBN, an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund and the funding by the Centro de Investigación Principe Felipe in the field of regenerative medicine through the collaboration agreement from the Conselleria de Sanidad (Generalitat Valenciana). The translation of this paper was funded by the Universidad Politécnica de Valencia, Spain.

References

  1. 1.
    Hench LL, Polar JM. Third-generation biomedical materials. Science. 2002;295:1014–7.CrossRefGoogle Scholar
  2. 2.
    Tsuji H, Ishizaka T. Porous biodegradable polyesters. II. Physical properties, morphology, and enzymatic and alkaline hydrolysis of porous poly(ε-caprolactone) films. J Appl Polym Sci. 2001;80:2281–91.CrossRefGoogle Scholar
  3. 3.
    Ang KC, Leong KF, Chua CK, Chandrasekaran M. Compressive properties and degradability of poly(ε-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. J Biomed Mater Res. 2007;80A:655–60.CrossRefGoogle Scholar
  4. 4.
    Song Y, Liu L, Weng X, Zhuo R. Acid-initiated polymerization of ε-caprolactone under microwave irradiation and its application in the preparation of drug controlled release system. J Biomater Sci Polym Ed. 2003;14:241–53.CrossRefGoogle Scholar
  5. 5.
    Kim HW, Knowles JC, Kim HE. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. J Mater Sci: Mater Med. 2005;16:189–95.CrossRefGoogle Scholar
  6. 6.
    Arote R, Kim TH, Kim YK, Hwang SK, Jiang HL, Song HH, Nah JW, Cho MH, Cho CS. A biodegradable poly(ester amine) based on polycaprolactone and polyethylenimine as a gene carrier. Biomaterials. 2007;28:735–44.CrossRefGoogle Scholar
  7. 7.
    Zhong ZK, Sun XZ. Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate. Polymer. 2001;42:6961–9.CrossRefGoogle Scholar
  8. 8.
    Kweon HY, Yoo MK, Park IK, Kim TH, Lee HC, Lee HS, Oh JS, Akaike T, Cho CS. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials. 2003;24:801–8.CrossRefGoogle Scholar
  9. 9.
    Ishaug-Riley SL, Okun LE, Prado G, Applegate MA, Ratcliffe A. Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials. 1999;20:2245–56.CrossRefGoogle Scholar
  10. 10.
    Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996;17:103–14.CrossRefGoogle Scholar
  11. 11.
    Más Estelles J, Vidaurre A, Meseguer Dueñas JM, Castilla Cortazar MI. Physical characterization of polycaprolactone scaffolds. J Mater Sci-Mater Med. 2008;19:189–95.CrossRefGoogle Scholar
  12. 12.
    Albertsson AC, Varma IK. Recent developments in ring opening polymerization of lactones for biomedical applications. Biomacromolecules. 2003;4:1466–86.CrossRefGoogle Scholar
  13. 13.
    Vert M. Aliphatic polyesters: Great degradable polymers that cannot do everything. Biomacromolecules. 2005;6:538–46.CrossRefGoogle Scholar
  14. 14.
    Chawla JS, Amiji MM. Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm. 2002;249:127–38.CrossRefGoogle Scholar
  15. 15.
    Hayashi T, Nakayama K, Mochizuki M, Masuda T. Studies on biodegradable poly(hexano-6-lactone) fibers. Part 3. Enzymatic degradation in vitro (IUPAC Technical Report). Pure Appl Chem. 2002;74:869–80.CrossRefGoogle Scholar
  16. 16.
    Tisuji H, Mizuno A, Ikada Y. Blends of aliphatic polyesters. III. Biodegradation of solution-cast blends from poly(l-lactide) and poly(ε-caprolactone). J Appl Polym Sci. 1998;70:2259–68.CrossRefGoogle Scholar
  17. 17.
    Albuerne J, Marquez L, Müller AJ, Raquez JM, Degée P, Dubois P. Hydrolytic degradation of double crystalline PPDX-b-PCL diblock copolymers. Macromol Chem Phys. 2005;206:903–14.CrossRefGoogle Scholar
  18. 18.
    Kulkarni A, Reiche J, Hartmann J, Kratz K, Lendlein A. Selective enzymatic degradation of poly(ε-caprolactone) containing multiblock copolymers. Eur J Pharm Biopharm. 2008;68:46–56.CrossRefGoogle Scholar
  19. 19.
    Pitt CG, Gratzl NM, Kimmel GL, Surles J, Schindler A. Aliphatic polyesters. 2. The degradation of poly(dl-Lactide), poly(epsilon-caprolactone) and their copolymers in vivo. Biomaterials. 1981;2:215–20.CrossRefGoogle Scholar
  20. 20.
    Vidaurre A, Meseguer Dueñas JM, Más Estellés J, Castilla Cortázar MI. Influence of enzymatic degradation on physical properties of poly(ε-caprolactone) films and sponges. Macromol Symp. 2008;269:38–46.CrossRefGoogle Scholar
  21. 21.
    Marten E, Müller R-J, Deckwer W-D. Studies on the enzymatic hydrolysis of polyesters I. Low molecular mass model esters and aliphatic polyesters. Polym Degrad Stab. 2003;80:485–501.CrossRefGoogle Scholar
  22. 22.
    Mochizuki M, Hirami M. Structural effects on the biodegradation of aliphatic polyesters. Polym Adv Technol. 1997;8:203–9.CrossRefGoogle Scholar
  23. 23.
    Li S, Liu L, Garreau H, Vert M. Lipase-catalyzed biodegradation of poly(ε-caprolactone) blended with various polylactide-based polymers. Biomacromolecules. 2003;4:372–7.CrossRefGoogle Scholar
  24. 24.
    Liu L, Li S, Garreau H, Vert M. Selective enzymatic degradations of poly(l-lactide) and poly(ε-caprolactone) blend films. Biomacromolecules. 2000;1:350–9.CrossRefGoogle Scholar
  25. 25.
    Pitt CG, Chasalow FI, Hibionada YM, Klimas DM, Schindler A. Aliphatic polyesters. I. The degradation of poly(epsilon-caprolactone) in vivo. J.Appl Polym Sci. 1981;26:3779–87.CrossRefGoogle Scholar
  26. 26.
    Sun H, Mei L, Song C, Cui X, Wang P. The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials. 2006;27:1735–40.CrossRefGoogle Scholar
  27. 27.
    Bat E, Plantinga JA, Harmsen MC, van Luyn MJA, Zhang Z, Grijpma DW, Feijen J. Trimethylene carbonate an (ε-caprolactone) based (co)polymer networks: mechanical properties and enzymatic degradation. Biomacromolecules. 2008;9:3208–15.CrossRefGoogle Scholar
  28. 28.
    Escobar Ivirico JL, Salmeron Sanchez M, Sabater i Serra R, Meseguer Dueñas JM, Gomez Ribelles JL, Monleón Pradas M. Structure and properties of poly(ε-caprolactone) networks with modulated water uptake. Macromol Chem Phys. 2006;207:2195–205.CrossRefGoogle Scholar
  29. 29.
    Sabater i Serra R, Escobar Ivirico JL, Meseguer Dueñas JM, Andrio Balado A, Gomez Ribelles JL, Salmeron Sanchez M. Dielectric relaxation spectrum of poly(ε-caprolactone) networks hydrophilized by copolymerization with 2-hydroxyethyl acrylate. Eur Phys J E. 2007;22:293–302.CrossRefGoogle Scholar
  30. 30.
    Strobel G. The physics of polymers. Berlin: Springer; 1997. p. 160–90.Google Scholar
  31. 31.
    Boxberg Y, Schnabelrauch M, Vogt S, Salmerón Sánchez M, Gallego Ferrer G, Monleón Pradas M, Suay Antón JJ. Effect of hydrophilicity on the properties of a degradable polylactide. J Polym Sci B: Polym Phys. 2006;44:656–64.CrossRefGoogle Scholar
  32. 32.
    Gibson LJ, Ashby MF. Cellular solids: structure and properties. 2nd ed. Cambridge: Cambridge University Press; 1997.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • J. M. Meseguer-Dueñas
    • 1
    • 2
  • J. Más-Estellés
    • 1
  • I. Castilla-Cortázar
    • 1
  • J. L. Escobar Ivirico
    • 1
    • 3
  • A. Vidaurre
    • 1
    • 2
  1. 1.Centro de Biomateriales e Ingeniería TisularUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)BarcelonaSpain
  3. 3.Centro de Investigación Príncipe FelipeValenciaSpain

Personalised recommendations