Skip to main content

Advertisement

Log in

Preparation and mechanical property of poly(ε-caprolactone)–matrix composites containing nano-apatite fillers modified by silane coupling agents

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

This study aims to improve the tensile strength and elastic modulus of nano-apatite/poly(ε-caprolactone) composites by silane-modification of the nano-apatite fillers. Three silane coupling agents were used to modify the surfaces of nano-apatite particles and composites of silanized apatite and PCL were prepared by a technique incorporating solvent dispersion, melting-blend and hot-pressing. The results showed that the silane coupling agents successfully modified the surfaces of nano-apatite fillers, and the crystallization temperatures of the silanized apatite/PCL composites were the higher than that of the non-silanized control material, although the melting temperature of the composites remained almost unaffected by silanization. The ultimate tensile strength and elastic modulus of the silanized composites reached 22.60 MPa and 1.76 GPa, as a result of the improved interfacial bonding and uniform dispersion of nano-apatite fillers. This study shows that the processing technique and silanization of nano-apatite particles can effectively improve the tensile strength and elastic modulus of nano-apatite/PCL composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shikinami Y, Kuno MO. Bioresorbable devices made of forged composites of hydroxyapatite(HA) particles and poly-L-lactide(PLLA): part I. Basic characteristics. Biomaterials. 1999;20:859–77.

    Article  CAS  PubMed  Google Scholar 

  2. Silvio LD, Dalby M, Bonfield W. In vitro response of osteoblasts to hydroxyl- apatite-reinforced polyethylene composites. J Mater Sci Mater Med. 1998;9:845–8.

    Article  PubMed  Google Scholar 

  3. Wang M, Yue CY, Chua B. Production and evaluation of hydroxyapatite reinforced polysulfone for tissue replacement. J Mater Sci Mater Med. 2001;9:821–6.

    Article  Google Scholar 

  4. Yu SC, Kithva PH, Rajemdra K, Philip C, Khor KA. In vitro apatite formation and its growth kinetics on hydroxyapatite/polytheretherketone biocomposites. Biomaterials. 2005;26:2343–52.

    Article  CAS  PubMed  Google Scholar 

  5. Lei Y, Rai B, Ho KH, Teoh SH. In vitro degradation of novel bioactive poly-caprolactone—20% tricalcium phosphate composite scaffolds for bone engineering. Mater Sci Eng C. 2007;27:293–8.

    Article  CAS  Google Scholar 

  6. Ni J, Wang M. In vitro evaluation of hydroxyapatite reinforced polyhudrobutyrate composite. Mater Sci Eng C. 2002;20:101–9.

    Article  Google Scholar 

  7. Nenad I, Dragan U. Synthesis and application of hydroxyapatite/polylactide composite bio material. Appl Surf Sci. 2004;238:314–9.

    Article  Google Scholar 

  8. Wang M. Developing bioactive composite materials for tissue replacement. Biomaterials. 2003;24:2133–51.

    Article  CAS  PubMed  Google Scholar 

  9. Shor L, Guceri S, Wen XJ, et al. Fabrication of three-dimensional poly-caprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials. 2007;28:5291–7.

    Article  CAS  PubMed  Google Scholar 

  10. Wong SC, Baji A. Fracture strength and adhesive strength of hydroxylapatite-filled polycaprolactone. J Mater Sci Mater Med. 2008;19:929–36.

    Article  CAS  PubMed  Google Scholar 

  11. Causa F, Netti PA, Ambrosio L, et al. Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and humanosteoblast response. J Mater Sci Mater Med. 2005;10:672–81.

    Google Scholar 

  12. Chen BQ, Sun K. Poly(ε-caprolactone)/hydroxyapatite composites: effects of particle size, molecular weight distribution and irradiation on interfacial interaction and properties. Polym Test. 2005;24:64–70.

    Article  CAS  Google Scholar 

  13. Wong SC, Baji A, Gent AN. Effect of specimen thickness on fracture toughness and adhesive properties of hydroxyapatite-filled polycaprolactone. Composite A. 2008;39:579–87.

    Google Scholar 

  14. Huang J, Yu WL, Xiao WF, et al. Development of nano-sized hydroxyapatite reinforced composites for tissue engineering scaffolds. J Mater Sci Mater Med. 2007;18:2151–7.

    Article  CAS  PubMed  Google Scholar 

  15. Liu Q, Wijn JR, Groot K, Van CA. Surface modification of nano-apatite by grafting organic polymer. Biomaterials. 1998;19(11–12):1067–72.

    Article  CAS  PubMed  Google Scholar 

  16. Liao JG, Wang XJ, Zuo Y, et al. Surface modification of nano-hydroxyapatite with silane agent. J Inorg Mater. 2008;23(1):145–9.

    Article  CAS  Google Scholar 

  17. Masson MA, Champion R. Nucleation and crystal growth of zirconium molybdate hydrate in nitric acid. Chem Eng Sci. 2007;62(3):766–74.

    Article  Google Scholar 

  18. Kant T, Swaminathan K. Estimation of transverse/interlaminar stresses in laminated composites—a selective review and survey of current developments. Compos Struct. 2003;49(1):65–75.

    Article  Google Scholar 

  19. Yang R, Takahashi A, Wong CP. Di-block copolymer surfactant study to optimize filler dispersion in high dielectric constant polymer-ceramic composite. Composite A. 2003;34(1):1113–6.

    Article  Google Scholar 

  20. Chen BQ, Sun K. Mechanical and dynamic viscoelastic properties of hydroxyapatite reinforced poly(3-caprolactone). Polym Test. 2005;24:978–82.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This project was financially supported by Scientific Research Fund of Leshan government (09GZD027) and the National Natural Science Foundation of China (No. 30700172), Specialized Research Fund for the Doctoral Program of Higher Education for Young Teacher (20070613019), National Key Project of Scientific and Technical Supporting Program Fund from MSTC (2006BAI16B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, C., Weng, J., Duan, K. et al. Preparation and mechanical property of poly(ε-caprolactone)–matrix composites containing nano-apatite fillers modified by silane coupling agents. J Mater Sci: Mater Med 21, 3059–3064 (2010). https://doi.org/10.1007/s10856-010-4158-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4158-6

Keywords

Navigation