Skip to main content

Advertisement

Log in

Effects of biomaterials for Lab-on-a-chip production on cell growth and expression of differentiated functions of leukemic cell lines

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The rapid increase of the applications for Lab-on-a-chip devices has attracted the interest of researchers and engineers on standard process of the electronics industry for low production costs and large scale development, necessary for disposable applications. The printed circuit board technology could be used for this purpose, in particular for the wide range of materials available. In this paper, assays on biocompatibility of materials used for Lab-on-a-chip fabrication has been carried out using two tumor cell lines growing in suspension, the human chronic myelogenous leukemia K562 cell line, able to undergo erythroid differentiation when cultured with chemical inducers, and the lymphoblastoid cell line (LCL), extensively used for screening of cytotoxic T-lymphocytes (CTLs). We have demonstrated that some materials strongly inhibit cell proliferation of both the two cell lines to an extent higher that 70–75%, but only after a prolonged exposure of 3–6 days (Copper, Gold over Nickel, Aramid fiber filled epoxy uncured, b-stage epoxy die attach film, Tesa 4985 adhesive tape, Pyralux uncured, Copper + 1-octodecanethiol). However, when experiments were performed with short incubation time (1 h), only Aramid fiber filled epoxy uncured was cytotoxic. Variation of the results concerning the other materials was appreciable when the experiments performed on two cell lines were compared together. Furthermore, the effects of the materials on erythroid differentiation and CTL-mediated LCL lysis confirmed, in most of the cases, the data obtained in cytotoxic and antiproliferative tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PCB:

Printed circuit board

CTLs:

Cytotoxic T-lymphocytes

LCL:

Lymphoblastoid cell line

ITRS:

International technology roadmap for semiconductors

RCC:

Resin coated copper

DAF:

Die attach film

PDMS:

Poly(dimethylsiloxane)

SAMs:

Self-assembled monolayers

ODT:

Octadecanethiol

PF before lam:

Polyurethane film before lamination

PF after lam:

Polyurethane film after lamination

PP:

Polyurethane powder

Certonal FC-732T:

Certonal FC-732 tempered

EBV:

Epstein–Barr Virus

FBS:

Fetal bovine serum

EBNA-3:

EBV nuclear antigen 3

HLA-A2:

Human leukocyte antigen A2

E:T:

Effector:target

Cpm:

Counts per minute

References

  1. International Technology Roadmap for Semiconductors (ITRS). Assembly and packaging, 2005. http://public.itrs.net/. Accessed 7 July 2010.

  2. Reyes DR, Iossifidis D, Auroux PA, Manz A. Micro total analysis systems. 1. Introduction, theory, and technology. Anal Chem. 2002;74:2623–36.

    Article  CAS  PubMed  Google Scholar 

  3. Wego A, Richter S, Pagel L. Fluidic microsystems based on printed circuit board technology. J Micromech Microeng. 2001;11:528–31.

    Article  CAS  Google Scholar 

  4. Schütze J, Ilgen H, Fahrner WR. An integrated micro cooling system for electronic circuits. IEEE Trans Ind Electr. 2001;48:281–5.

    Article  Google Scholar 

  5. Nguyen NT, Huang X. Miniature valveless pumps based on printed circuit board technique. Sens Actuators A. 2001;88:104–11.

    Article  Google Scholar 

  6. Gong M, Kim CJ. Two-dimensional digital microfluidic system by multilayer printed circuit board. In: Proceedings of the IEEE international conference on micro electro mechanical systems, Miami Beach, FL. 2005. p. 726–29.

  7. Petrou PS, Moser I, Jobst G. BioMEMS device with integrated microdialysis probe and biosensor array. Biosens Bioelectron. 2002;10:859–65.

    Article  Google Scholar 

  8. Iafelice B et al. Aluminum printed circuit board technology for biomedical. In: Proceedings of the MicroTAS conference, Paris, France. 2007. p. 563–65.

  9. Gazzola D, Iafelice B, Jung E, Scarselli EF, Guerrieri R. An integrated electronic meniscus sensor for measurement of evaporative flow. Sens Actuators A. 2008;194:145–6.

    Google Scholar 

  10. Braun T et al. Microtechnology for realization of dielectrophoresis enhanced microwells for biomedical applications. In: Proceedings of the electronics packaging technology conference, Singapore. 2007. p. 406–10.

  11. Jung E, Manessis D, Neumann A, Böttcher L, Braun T, Bauer J, Reichl H, Iafelice B, Destro F, Gambari R. Lamination and laser structuring for a DEP microwell array. In: Proceedings of the design, test, integration and packaging of MEM/MOEMS, Stresa, Italy. 2007. p. 184–88.

  12. Bocchi M, Lombardini M, Faenza A, Rambelli L, Giulianelli L, Pecorari N, Guerrieri R. Dielectrophoretic trapping in microwells for manipulation of single cells and small aggregates of particles. Biosens Bioelectron. 2009;24:1177–83.

    Article  CAS  PubMed  Google Scholar 

  13. Lampronti I, Bianchi N, Borgatti M, Fibach E, Prus E, Gambari R. Accumulation of gamma-globin mRNA in human erythroid cells treated with angelicin. Eur J Haematol. 2003;71:189–95.

    Article  CAS  PubMed  Google Scholar 

  14. Zuccato C, Bianchi N, Borgatti M, Lampronti I, Massei F, Favre C, Gambari R. Everolimus is a potent inducer of erythroid differentiation and gamma-globin gene expression in human erythroid cells. Acta Haematol. 2007;117:168–76.

    Article  CAS  PubMed  Google Scholar 

  15. Rickinson AB, Moss DJ. Human cytotoxic T lymphocyte responses to Epstein-Barr virus infection. Annu Rev Immunol. 1997;15:405–31.

    Article  CAS  PubMed  Google Scholar 

  16. Hillman GG, Roessler N, Fulbright RS, Pontes JE, Haas GP. 51Cr-release assay adapted to a 96-well format sample reading. Biotechniques. 1993;15:744–9.

    CAS  PubMed  Google Scholar 

  17. Micheletti F, Canella A, Vertuani S, Marastoni M, Tosi L, Volinia S, Traniello S, Gavioli R. Supra-agonist peptides enhance the reactivation of memory CTL responses. J Immunol. 2000;165:4264–71.

    CAS  PubMed  Google Scholar 

  18. Loeher T, Manessis D, Ostmann A, Reichl H. Realization of large area stretchable electronic systems using lamination processes. In: Proceedings of the 16th European microelectronics and packaging conference & exhibition, Oulu, Finland. 2007. p. 630–34.

  19. Liu L, Huang YD, Zhang ZQ, Jiang ZX, Wu LN. Ultrasonic treatment of aramid fiber surface and its effect on the interface of aramid/epoxy composites. Appl Surf Sci. 2008;254:2594–9.

    Article  CAS  ADS  Google Scholar 

  20. Song SN, Tan HH, Ong PL. 2005 Die attach film application in multi die stack package. In: Proceedings of the 7th electronics packaging technology conference, Singapore. 2005. p. 848–52.

  21. McDonald JC, Whitesides GM. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res. 2002;35:491–9.

    Article  CAS  PubMed  Google Scholar 

  22. Hui AYN, Wang G, Lin B, Chan WT. Microwave plasma treatment of polymer surface for irreversible sealing of microfluidic devices. Lab Chip. 2005;5:1173–7.

    Article  CAS  PubMed  Google Scholar 

  23. Shull KR, Martin EF, Drzal PL, Hersam MC, Markowitz AR, McSwain RL. Adhesive transfer of thin viscoelastic films. Langmuir. 2005;21:178–86.

    Article  CAS  PubMed  Google Scholar 

  24. Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc. 1989;111:321–35.

    Article  CAS  Google Scholar 

  25. Floriano PN, Schlieben O, Doomes EE, Klein I, Janssen J, Hormes J, Poliakoff ED, McCarley RL. A grazing incidence surface X-ray absorption fine structure (GIXAFS) study of alkanethiols adsorbed on Au, Ag, and Cu. Chem Phys Lett. 2000;321:175–81.

    Article  CAS  ADS  Google Scholar 

  26. Colavita PE, Doescher MS, Molliet A, Evans U, Reddic J, Zhou J, Chen D, Miney PG, Myrick ML. Effects of metal coating on self-assembled monolayers on gold. 1. Copper on dodecanethiol and octadecanethiol. Langmuir. 2002;18:8503–9.

    Article  CAS  Google Scholar 

  27. Fibach E, Bianchi N, Borgatti M, Prus E, Gambari R. Mithramycin induces fetal hemoglobin production in normal and thalassemic human erythroid precursor cells. Blood. 2003;102:1276–81.

    Article  CAS  PubMed  Google Scholar 

  28. Gambari R, Del Senno L, Barbieri R, Viola L, Tripodi M, Raschella G, Fantoni A. Human leukemia K-562 cells: induction of erythroid differentiation by 5-azacytidine. Cell Differ. 1984;14:87–97.

    Article  CAS  PubMed  Google Scholar 

  29. Gabriele S, Versaevel M, Preira P, Théodoly O. A simple microfluidic method to select, isolate, and manipulate single-cells in mechanical and biochemical assays. Lab Chip. 2010;10:1459–67.

    Article  CAS  PubMed  Google Scholar 

  30. Park K, Suk HJ, Akin D, Bashir R. Dielectrophoresis-based cell manipulation using electrodes on a reusable printed circuit board. Lab Chip. 2009;9:2224–9.

    Article  CAS  PubMed  Google Scholar 

  31. Fuchs AB, Romani A, Freida D, Medoro G, Abonnenc M, Altomare L, Chartier I, Guergour D, Villiers C, Marche PN, Tartagni M, Guerrieri R, Chatelain F, Manaresi N. Electronic sorting and recovery of single live cells from microlitre sized samples. Lab Chip. 2006;6:121–6.

    Article  CAS  PubMed  Google Scholar 

  32. Altomare L, Borgatti M, Medoro G, Manaresi N, Tartagni M, Guerrieri R, Gambari R. Levitation and movement of human tumor cells using a printed circuit board device based on software-controlled dielectrophoresis. Biotechnol Bioeng. 2003;82:474–9.

    Article  CAS  PubMed  Google Scholar 

  33. Gambari R, Borgatti M, Altomare L, Manaresi N, Medoro G, Romani A, Tartagni M, Guerrieri R. Applications to cancer research of “lab-on-a-chip” devices based on dielectrophoresis (DEP). Technol Cancer Res Treat. 2003;2:31–40.

    PubMed  Google Scholar 

  34. Baraldi PG, Romagnoli R, Beria I, Cozzi P, Geroni C, Mongelli N, Bianchi N, Mischiati C, Gambari R. Synthesis and antitumor activity of new benzoheterocyclic derivatives of distamycin A. J Med Chem. 2000;43:2675–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Manuel Seckel and Rene Jansen for the precious laboratory work. This research is funded by the EU CoChiSe Project (project reference: 034534). Roberto Gambari is granted by FIRB 2002 (Fondo per gli Investimenti nella Ricerca di Base, Italy), by AIRC (Associazione Italiana per la Ricerca sul Cancro, Italy), by Fondazione Cassa di Risparmio di Padova e Rovigo (CARIPARO, Italy) and by Telethon (contract GGP07257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Gambari.

Additional information

Federica Destro and Monica Borgatti have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary materials Fig. 1S

Covering of edges of a sample material embedded by PDMS in a 96-well plate. Pictures show PDMS, marked by an arrow (pointing the well wall) and a circle, dispensed at different dispensing time (from top-left picture): 1.0, 1.2, 1.5, 1.7, 2.0, 2.3, 2.5, 2.8, and 3.1 s; applied pressure (1.5 bar) and internal diameter of the dispenser tip (0.020’) are fixed. (JPEG 699 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Destro, F., Borgatti, M., Iafelice, B. et al. Effects of biomaterials for Lab-on-a-chip production on cell growth and expression of differentiated functions of leukemic cell lines. J Mater Sci: Mater Med 21, 2653–2664 (2010). https://doi.org/10.1007/s10856-010-4125-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4125-2

Keywords

Navigation