Skip to main content

Advertisement

Log in

Synthesis and characterization of HAp nanorods from a cationic surfactant template method

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydroxyapatite (HAp) [Ca10(PO4)6(OH)2] nanorods were synthesized using a surfactant templating method, with cetyltrimethylammonium bromide (CTAB) micelles acting as template for HAp growth. The effects of the sintering temperature on the morphological and crystallographic characteristics and on chemical composition of the “as-prepared” structures are discussed. The experimental results show that low heat-treatment temperatures are preferred in order to obtain high quality nanorods, with diameters ranging between 20 and 50 nm. High heat-treatment temperatures enhance the thermal decomposition of HAp into other calcium phosphate compounds, and the sintering of particles into micrometer ball-like structures. The stability of aqueous suspensions of HAp nanorods is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rao CNR, Cheetham AK. Materials science at the nanoscale. In: Gogotsi Y, editor. Nanomaterials handbook. New York: CRC Press, Taylor & Francis Group; 2006. p. 1–2.

    Google Scholar 

  2. Guo Y, Shi D, Lian J, Wang ZDW, Cho H, Liu G, et al. Quantum dot conjugated hydroxylapatite nanoparticles for in vivo imaging. Nanotechnology 2008;19:175102 (6 pp).

    Google Scholar 

  3. Queiroz AC, Teixeira S, Santos JD, Monteiro FJ. Production of porous hydroxyapatite with potential for controlled drug delivery. Mater Sci Forum. 2004;455–456:358–60.

    Article  Google Scholar 

  4. Vallet-Regí M. Ceramics for medical applications. J Chem Soc Dalton Trans. 2001;2:97–108.

    Article  Google Scholar 

  5. Dorozhkin SV, Epple M. Biological and medical significance of calcium phosphates. Angew Chem Int. 2002;41:3130–46.

    Article  CAS  Google Scholar 

  6. Ferraz MP, Monteiro FJ, Manuel CM. Hydroxyapatite nanoparticles: a review of preparation methodologies. J Appl Biomater Biomech. 2004;2:74–80.

    CAS  PubMed  Google Scholar 

  7. Cengiz B, Gokce Y, Yildiz N, Aktas Z, Calimi A. Synthesis and characterization of hydroxyapatite nanoparticles. Colloids Surf A Physichochem Eng Aspects. 2008;322:29–33.

    Article  CAS  Google Scholar 

  8. Ying JY, Mehnert PC, Wong MS. Synthesis and application of supramolecular-templated mesoporous materials. Angew Chem Int Ed. 1999;38:56–77.

    Article  CAS  Google Scholar 

  9. Cates ME, Fielding SM. Rheology of giant micelles. Adv Phys. 2006;55:799–879.

    Article  CAS  ADS  Google Scholar 

  10. Nagarajan R. Molecular thermodynamics of giant micelles. In: Zana R, Kaler EW, editors. Giant micelles—properties and applications. New York: CRC Pess, Taylor & Francis Group; 2007. p. 2–5.

    Google Scholar 

  11. Li Y, Tjandra W, Tam KC. Synthesis of nanoporous hydroxyapatite using cationic surfactants as templates. Mater Res Bull. 2008;43:2318–26.

    Article  CAS  Google Scholar 

  12. Yao J, Tjandra W, Chen YZ, Tam KC, Mab J, Soh B. Hydroxyapatite nanostructure material derived using cationic surfactant as a template. J Mater Chem. 2003;13:3053–7.

    Article  CAS  Google Scholar 

  13. Berret JF. Rheology of wormlike micelles: equilibrium properties and shear banding transition. In: Weiss RG, Terech P, editors. Molecular gels. Materials with self-assembled fibrillar networks. Dordrecht: Springer; 2006. p. 667–720.

    Google Scholar 

  14. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.

    Article  CAS  ADS  Google Scholar 

  15. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992;114:10834–43.

    Article  CAS  Google Scholar 

  16. Li YY, Li J, Nakajima B. Nanostructured porous biomaterials for controlled drug release systems. In: Paul KC, Xuanyong L, editors. Biomaterials-fabrication and processing. New York: CRC Press, Taylor & Francis Group; 2008. p. 196–206.

    Chapter  Google Scholar 

  17. Herzberg G. The infrared and Raman spectra of poliatomic molecules. New York: D van Nostrand Company, Inc.; 1945.

    Google Scholar 

  18. Awonusi A, Morris MD, Tecklenburg MMJ. Carbonate assignment and calibration in the Raman spectrum of apatite. Calcif Tissue Int. 2007;81:46–52.

    Article  CAS  PubMed  Google Scholar 

  19. Fowler BO. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorg Chem. 1974;13:194–207.

    Article  CAS  Google Scholar 

  20. Aza PN, Santos C, Pazo A, Aza S, Cuscó R, Artus L. Vibrational properties of calcium phospate coumpounds. 1. Raman spectrum of β-tricalcium phosphate. Chem Mater. 1997;9:912–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Agostinho Moreira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coelho, J.M., Moreira, J.A., Almeida, A. et al. Synthesis and characterization of HAp nanorods from a cationic surfactant template method. J Mater Sci: Mater Med 21, 2543–2549 (2010). https://doi.org/10.1007/s10856-010-4122-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4122-5

Keywords

Navigation