Skip to main content

Advertisement

Log in

A ceramic-based anticancer drug delivery system to treat breast cancer

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Drug delivery systems offer the advantage of sustained targeted release with minimal side effect. In the present study, the therapeutic efficacy of a porous silica–calcium phosphate nanocomposite (SCPC) as a new delivery system for 5-Fluorouracil (5-FU) was evaluated in vitro and in vivo. In vitro studies showed that two formulations; SCPC50/5-FU and SCPC75/5-FU hybrids were very cytotoxic for 4T1 mammary tumor cells. In contrast, control SCPCs without drug did not show any measurable toxic effect. Release kinetics studies showed that SCPC75/5-FU hybrid provided a burst release of 5-FU in the first 24 h followed by a sustained release of a therapeutic dose (30.7 μg/day) of the drug for up to 32 days. Moreover, subcutaneous implantation of SCPC75/5-FU hybrid disk in an immunocompetent murine model of breast cancer stopped 4T1 tumor growth. Blood analyses showed comparable concentrations of Ca, P and Si in animals implanted with or without SCPC75 disks. These results strongly suggest that SCPC/5-FU hybrids can provide an effective treatment for solid tumors with minimal side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Goldberg EP, Hadba AR, Almond BA, Marotta JS. Intratumoral cancer chemotherapy and immunotherapy: opportunities for nonsystemic preoperative drug delivery. J Pharm Pharmacol. 2002;54:159–80.

    Article  CAS  PubMed  Google Scholar 

  2. Dreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst. 2006;98:335–44.

    Article  CAS  PubMed  Google Scholar 

  3. Ragupathi G, Meyers M, Adluri S, Howard L, Musselli C, Livingston PO. Induction of antibodies against GD3 ganglioside in melanoma patients by vaccination with GD3-lactone-KLH conjugate plus immunological adjuvant QS-21. Int J Cancer. 2000;85:659–66.

    Article  CAS  PubMed  Google Scholar 

  4. He YC, Chen JW, Cao J, Pan DY, Qiao JG. Toxicities and therapeutic effect of 5-fluorouracil controlled release implant on tumor-bearing rats. World J Gastroenterol. 2003;9:1795–8.

    CAS  PubMed  Google Scholar 

  5. Curnis F, Sacchi A, Corti A. Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest. 2002;110:475–82.

    CAS  PubMed  Google Scholar 

  6. Schlemmer HP, Becker M, Bachert P, Dietz A, Rudat V, Vanselow B, Wollensack P, Zuna I, Knopp MV, Weidauer H, Wannenmacher M, van Kaick G. Alterations of intratumoral pharmacokinetics of 5-fluorouracil in head and neck carcinoma during simultaneous radiochemotherapy. Cancer Res. 1999;59:2363–9.

    CAS  PubMed  Google Scholar 

  7. Wu P, Grainger DW. Drug/device combinations for local drug therapies and infection prophylaxis. Biomaterials. 2006;27:2450–67.

    Article  CAS  PubMed  Google Scholar 

  8. El-Ghannam A. Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices. 2005;2:87–101.

    Article  PubMed  Google Scholar 

  9. Akbuga J, Bergisadi N. 5-Fluorouracil-loaded chitosan microspheres: preparation and release characteristics. J Microencapsul. 1996;13:161–8.

    Article  CAS  PubMed  Google Scholar 

  10. Ciftci K, Hincal AA, Kas HS, Ercan TM, Sungur A, Guven O, Ruacan S. Solid tumor chemotherapy and in vivo distribution of fluorouracil following administration in poly(l-lactic acid) microspheres. Pharm Dev Technol. 1997;2:151–60.

    Article  CAS  PubMed  Google Scholar 

  11. Tzafriri AR, Lerner EI, Flashner-Barak M, Hinchcliffe M, Ratner E, Parnas H. Mathematical modeling and optimization of drug delivery from intratumorally injected microspheres. Clin Cancer Res. 2005;11:826–34.

    CAS  PubMed  Google Scholar 

  12. Nishiyama N, Okazaki S, Cabral H, Miyamoto M, Kato Y, Sugiyama Y, Nishio K, Matsumura Y, Kataoka K. Novel cisplatin-incorporated polymeric micelles can eradicate solid tumors in mice. Cancer Res. 2003;63:8977–83.

    CAS  PubMed  Google Scholar 

  13. Au JL, Jang SH, Zheng J, Chen CT, Song S, Hu L, Wientjes MG. Determinants of drug delivery and transport to solid tumors. J Control Release. 2001;74:31–46.

    Article  CAS  PubMed  Google Scholar 

  14. Dhanikula AB, Panchagnula R. Localized paclitaxel delivery. Int J Pharm. 1999;183:85–100.

    Article  CAS  PubMed  Google Scholar 

  15. Huwyler J, Drewe J, Krahenbuhl S. Tumor targeting using liposomal antineoplastic drugs. Int J Nanomed. 2008;3:21–9.

    Article  CAS  Google Scholar 

  16. Fontana G, Maniscalco L, Schillaci D, Cavallaro G, Giammona G. Solid lipid nanoparticles containing tamoxifen characterization and in vitro antitumoral activity. Drug Deliv. 2005;12:385–92.

    Article  CAS  PubMed  Google Scholar 

  17. Hampel S, Kunze D, Haase D, Kramer K, Rauschenbach M, Ritschel M, Leonhardt A, Thomas J, Oswald S, Hoffmann V, Buchner B. Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine. 2008;3:175–82.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang C, Qu G, Sun Y, Wu X, Yao Z, Guo Q, Ding Q, Yuan S, Shen Z, Ping Q, Zhou H. Pharmacokinetics, biodistribution, efficacy and safety of N-octyl-O-sulfate chitosan micelles loaded with paclitaxel. Biomaterials. 2008;29:1233–41.

    Article  CAS  PubMed  Google Scholar 

  19. Lim Soo P, Cho J, Grant J, Ho E, Piquette-Miller M, Allen C. Drug release mechanism of paclitaxel from a chitosan-lipid implant system: effect of swelling, degradation and morphology. Eur J Pharm Biopharm. 2008;69:149–57.

    Article  CAS  PubMed  Google Scholar 

  20. Benghuzzi H, England B. Biocompatibility of steroid-HA delivery system using adult castrated rams as a model. Biomed Sci Instrum. 2001;37:275–80.

    CAS  PubMed  Google Scholar 

  21. Itokazu M, Sugiyama T, Ohno T, Wada E, Katagiri Y. Development of porous apatite ceramic for local delivery of chemotherapeutic agents. J Biomed Mater Res. 1998;39:536–8.

    Article  CAS  PubMed  Google Scholar 

  22. Yapp DT, Lloyd DK, Zhu J, Lehnert SM. Tumor treatment by sustained intratumoral release of cisplatin: effects of drug alone and combined with radiation. Int J Radiat Oncol Biol Phys. 1997;39:497–504.

    CAS  PubMed  Google Scholar 

  23. Netz DJ, Sepulveda P, Pandolfelli VC, Spadaro AC, Alencastre JB, Bentley MV, Marchetti JM. Potential use of gelcasting hydroxyapatite porous ceramic as an implantable drug delivery system. Int J Pharm. 2001;213:117–25.

    Article  CAS  PubMed  Google Scholar 

  24. Zafirau W, Parker D, Billotte W, Bajpai PK. Development of a ceramic device for the continuous local delivery of steroids. Biomed Sci Instrum. 1996;32:63–70.

    CAS  PubMed  Google Scholar 

  25. Shenoy BD, Udupa N, Kamath R, Devi PU. Evaluation of anti-tumor efficacy of injectable Centchroman in mice bearing Ehrlich ascites carcinoma. Indian J Physiol Pharmacol. 1999;43:259–62.

    CAS  PubMed  Google Scholar 

  26. Renoir JM, Stella B, Ameller T, Connault E, Opolon P, Marsaud V. Improved anti-tumoral capacity of mixed and pure anti-oestrogens in breast cancer cell xenografts after their administration by entrapment in colloidal nanosystems. J Steroid Biochem Mol Biol. 2006;102:114–27.

    Article  CAS  PubMed  Google Scholar 

  27. Gupta G, El-Ghannam A, Kirakodu S, Khraisheh M, Zbib H. Enhancement of osteoblast gene expression by mechanically compatible porous Si-rich nanocomposite. J Biomed Mater Res B Appl Biomater. 2007;81:387–96.

    PubMed  Google Scholar 

  28. Gupta G, Kirakodu S, El-Ghannam A. Dissolution kinetics of a Si-rich nanocomposite and its effect on osteoblast gene expression. J Biomed Mater Res A. 2007;80:486–96.

    PubMed  Google Scholar 

  29. El-Ghannam A, Ning CQ, Mehta J. Cyclosilicate nanocomposite: a novel resorbable bioactive tissue engineering scaffold for BMP and bone-marrow cell delivery. J Biomed Mater Res A. 2004;71:377–90.

    Article  CAS  PubMed  Google Scholar 

  30. El-Ghannam AR. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship. J Biomed Mater Res A. 2004;69:490–501.

    Article  PubMed  Google Scholar 

  31. Ning CQ, Mehta J, El-Ghannam A. Effects of silica on the bioactivity of calcium phosphate composites in vitro. J Mater Sci Mater Med. 2005;16:355–60.

    Article  CAS  PubMed  Google Scholar 

  32. Liang Y, Eid MA, El Etreby F, Lewis RW, Kumar MV. Mifepristone-induced secretion of transforming growth factor beta1-induced apoptosis in prostate cancer cells. Int J Oncol. 2002;21:1259–67.

    CAS  PubMed  Google Scholar 

  33. El-Ghannam A, Ning CQ. Effect of bioactive ceramic dissolution on the mechanism of bone mineralization and guided tissue growth in vitro. J Biomed Mater Res A. 2006;76:386–97.

    CAS  PubMed  Google Scholar 

  34. El-Ghannam A, Ahmed K, Omran M. Nanoporous delivery system to treat osteomyelitis and regenerate bone: gentamicin release kinetics and bactericidal effect. J Biomed Mater Res B Appl Biomater. 2005;73:277–84.

    PubMed  Google Scholar 

  35. Dréau D, Karaa A, Culberson C, Wyan H, McKillop IH, Clemens MG. Bosentan inhibits tumor vascularization and bone metastasis in an immunocompetent skin-fold chamber model of breast carcinoma cell metastasis. Clin Exp Metastasis. 2006;23:41–53.

    Article  PubMed  Google Scholar 

  36. Jensen MM, Jorgensen JT, Binderup T, Kjaer A. Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper. BMC Med Imaging. 2008;8:16.

    Article  PubMed  Google Scholar 

  37. Jang SH, Wientjes MG, Lu D, Au JL. Drug delivery and transport to solid tumors. Pharm Res. 2003;20:1337–50.

    Article  CAS  PubMed  Google Scholar 

  38. Durand RE. Intermittent blood flow in solid tumours—an under-appreciated source of ‘drug resistance’. Cancer Metastasis Rev. 2001;20:57–61.

    Article  CAS  PubMed  Google Scholar 

  39. el-Kareh AW, Secomb TW. Theoretical models for drug delivery to solid tumors. Crit Rev Biomed Eng. 1997;25:503–71.

    CAS  PubMed  Google Scholar 

  40. Owen MR, Byrne HM, Lewis CE. Mathematical modelling of the use of macrophages as vehicles for drug delivery to hypoxic tumour sites. J Theor Biol. 2004;226:377–91.

    Article  CAS  MathSciNet  PubMed  Google Scholar 

  41. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6:583–92.

    Article  CAS  PubMed  Google Scholar 

  42. Yang Y, Jiang JS, Du B, Gan ZF, Qian M, Zhang P. Preparation and properties of a novel drug delivery system with both magnetic and biomolecular targeting. J Mater Sci Mater Med. 2009;20:301–7.

    Article  CAS  PubMed  Google Scholar 

  43. El-Ghannam A, Cunningham L Jr, Pienkowski D, Hart A. Bone engineering of the rabbit ulna. J Oral Maxillofac Surg. 2007;65:1495–502.

    Article  PubMed  Google Scholar 

  44. Phan PV, Grzanna M, Chu J, Polotsky A, el-Ghannam A, Van Heerden D, Hungerford DS, Frondoza CG. The effect of silica-containing calcium-phosphate particles on human osteoblasts in vitro. J Biomed Mater Res A. 2003;67:1001–8.

    Article  PubMed  Google Scholar 

  45. El-Ghannam A, Hart A, Cunningham L, White D (2009) Evaluation of SCPC toxicity on liver, spleen, heart, kidney and lungs of rabbits after implantation in a segmental bone defect. J Biomed Mater Res A (in press)

  46. El-Ghannam A, Dreau D (2008) SCPC-5-FU a novel nanocomposite drug delivery system for cancer treatment in “8th world biomaterials congress”, Amsterdam, The Netherlands

  47. Raymond E, Buquet-Fagot C, Djelloul S, Mester J, Cvitkovic E, Allain P, Louvet C, Gespach C. Antitumor activity of oxaliplatin in combination with 5-fluorouracil and the thymidylate synthase inhibitor AG337 in human colon, breast and ovarian cancers. Anticancer Drugs. 1997;8:876–85.

    Article  CAS  PubMed  Google Scholar 

  48. Hiraga T, Hata K, Ikeda F, Kitagaki J, Fujimoto-Ouchi K, Tanaka Y, Yoneda T. Preferential inhibition of bone metastases by 5′-deoxy-5-fluorouridine capecitabine in the 4T1/luc mouse breast cancer model. Oncol Rep. 2005;14:695–9.

    CAS  PubMed  Google Scholar 

  49. Kim JH, Kim YS, Kim S, Park JH, Kim K, Choi K, Chung H, Jeong SY, Park RW, Kim IS, Kwon IC. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J Control Release. 2006;111:228–34.

    Article  CAS  PubMed  Google Scholar 

  50. Al-Ghananeem AM, Malkawi AH, Muammer YM, Balko JM, Black EP, Mourad W, Romond E. Intratumoral delivery of Paclitaxel in solid tumor from biodegradable hyaluronan nanoparticle formulations. AAPS PharmSciTech. 2009;10:410–7.

    Article  CAS  PubMed  Google Scholar 

  51. Lee H, Lee K, Park TG. Hyaluronic acid-paclitaxel conjugate micelles: synthesis, characterization, and antitumor activity. Bioconj Chem. 2008;19:1319–25.

    Article  CAS  Google Scholar 

  52. He M, Zhao Z, Yin L, Tang C, Yin C. Hyaluronic acid coated poly(butyl cyanoacrylate) nanoparticles as anticancer drug carriers. Int J Pharm. 2009;373:165–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of UNC Charlotte through a research grant (AE and DD) and of the vivarium personnel for animal care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed El-Ghannam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Ghannam, A., Ricci, K., Malkawi, A. et al. A ceramic-based anticancer drug delivery system to treat breast cancer. J Mater Sci: Mater Med 21, 2701–2710 (2010). https://doi.org/10.1007/s10856-010-4121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4121-6

Keywords

Navigation