Advertisement

Journal of Materials Science: Materials in Medicine

, Volume 21, Issue 9, pp 2569–2581 | Cite as

Design of novel three-phase PCL/TZ–HA biomaterials for use in bone regeneration applications

  • Aurelio Salerno
  • Maria Oliviero
  • Ernesto Di Maio
  • Paolo A. Netti
  • Cristina Rofani
  • Alessia Colosimo
  • Valentina Guida
  • Bruno Dallapiccola
  • Paolo Palma
  • Emidio Procaccini
  • Anna C. Berardi
  • Francesco Velardi
  • Anna Teti
  • Salvatore Iannace
Article

Abstract

The design of bioactive scaffold materials able to guide cellular processes involved in new-tissue genesis is key determinant in bone tissue engineering. The aim of this study was the design and characterization of novel multi-phase biomaterials to be processed for the fabrication of 3D porous scaffolds able to provide a temporary biocompatible substrate for mesenchymal stem cells (MSCs) adhesion, proliferation and osteogenic differentiation. The biomaterials were prepared by blending poly(ε-caprolactone) (PCL) with thermoplastic zein (TZ), a thermoplastic material obtained by de novo thermoplasticization of zein. Furthermore, to bioactivate the scaffolds, microparticles of osteoconductive hydroxyapatite (HA) were dispersed within the organic phases. Results demonstrated that materials and formulations strongly affected the micro-structural properties and hydrophilicity of the scaffolds and, therefore, had a pivotal role in guiding cell/scaffold interaction. In particular, if compared to neat PCL, PCL–HA composite and PCL/TZ blend, the three-phase PCL/TZ–HA showed improved MSCs adhesion, proliferation and osteogenic differentiation capability, thus demonstrating potential for bone regeneration.

Keywords

Foam Osteogenic Differentiation Bone Regeneration Dynamic Mechanical Analysis Bone Tissue Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This research has been financially supported by a grant of the Italian Ministry of Health, art. 12bis D. Lgs. 229/99. The authors thank Finceramica (Faenza) for supply the HA used in this work.

References

  1. 1.
    Mercuri LG. Alloplastic temporomandibular joint reconstruction. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85:631–7.CrossRefPubMedGoogle Scholar
  2. 2.
    Warnke PH, Springer ING, Wiltfang J, Acil Y, Eufinger H, Wehmöller M, Russo P, Bolte H, Sherry E, Behrens E. Growth and transplantation of a custom vascularised bone graft in a man. Lancet. 2004;364:766–70.CrossRefPubMedGoogle Scholar
  3. 3.
    Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: state of the art and future trends. Macromol Biosci. 2004;4:743–65.CrossRefPubMedGoogle Scholar
  4. 4.
    Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.CrossRefPubMedGoogle Scholar
  5. 5.
    Eppley BL, Platis JM, Sadove AM. Experimental effects of bone plating in infancy on craniomaxillofacial skeletal growth. Cleft Palate Craniofac J. 1993;30:164–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Schantz JT, Teoh SH, Lim TC, Endres M, Lam CX, Hutmacher DW. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Tissue Eng. 2003;9:113–26.CrossRefGoogle Scholar
  7. 7.
    Caplan AL. Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol. 2007;213:341–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Kadiyala S, Jaiswal N, Bruder SP. Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng. 1997;3:173–85.CrossRefGoogle Scholar
  9. 9.
    Mygind T, Stiehler M, Baatrup A, Li H, Zou X, Flyvbjerg A, et al. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials. 2007;28(6):1036–47.CrossRefPubMedGoogle Scholar
  10. 10.
    Woodard JR, Hilldore AJ, Lan SK, Park CJ, Morgan AW, Eurell JAC, Clark SG, Wheeler MB, Jamison RD, Johnson AJW. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials. 2007;28:45–54.CrossRefPubMedGoogle Scholar
  11. 11.
    Ma PX, Zhang R, Xiao G, Franceschi R. Engineering new bone tissue in vitro on highly porous poly(a-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res. 2001;54:284–93.CrossRefPubMedGoogle Scholar
  12. 12.
    Murugan R, Ramakrishna S. Development of nanocomposites for bone grafting. Compos Sci Technol. 2005;65:2385–406.CrossRefGoogle Scholar
  13. 13.
    Shor L, Güçeri S, Wen X, Gandhi M, Sun W. Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast–scaffold interactions in vitro. Biomaterials. 2007;28:5291–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Kim S, Ahn K, Park MS, Lee J, Choi CY, Kim B. A poly(lactide-co-glycolide)/hydroxyapatite composite scaffold with enhanced osteoconductivity. J Biomed Mater Res. 2007;80A:206–15.CrossRefGoogle Scholar
  15. 15.
    Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N, et al. Blends of poly-(ε-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules. 2005;6:1961–76.CrossRefPubMedGoogle Scholar
  16. 16.
    Di Franco CR, Cyras VP, Busalmen JP, Ruseckaite RA, Vázquez A. Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polym Degrad Stab. 2004;86:95–103.CrossRefGoogle Scholar
  17. 17.
    Dong J, Sun Q, Wang J. Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility. Biomaterials. 2004;25:4691–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Gong S, Wang H, Sun Q, Xue S, Wang J. Mechanical properties and in vitro biocompatibility of porous zein scaffolds. Biomaterials. 2006;27(20):3793–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Van Vlierberghe S, Cnudde V, Dubruel P, Masschaele B, Cosijns A, De Paepe I, Jacobs PJS, Van Hoorebeke L, Remon JP, Schacht E. Porous gelatin hydrogels. 1. Cryogenic formation and structure analysis. Biomacromolecules. 2007;8:331–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Vandelli MA, Rivasi F, Guerra P, Forni F, Arletti R. Gelatin microspheres crosslinked with d,l-glyceraldehyde as a potential drug delivery system: preparation, characterisation, in vitro and in vivo studies. Int J Pharm. 2001;215:175–84.CrossRefPubMedGoogle Scholar
  21. 21.
    Salerno A, Oliviero M, Di Maio E, Iannace S. Thermoplastic foams from zein and gelatin. Int Polym Proc. 2007;22(5):480–8.Google Scholar
  22. 22.
    Marin S, Favis BD. Co-continuous morphology development in partially miscible PMMA/PC blends. Polymer. 2002;43:4723–31.CrossRefGoogle Scholar
  23. 23.
    Salerno A, Oliviero M, Di Maio E, Iannace S, Netti PA. Design of porous polymeric scaffolds by gas foaming of heterogeneous blends. J Mater Sci: Mater Med. 2009;20(10):2043–51.CrossRefGoogle Scholar
  24. 24.
    Ishaug-Riley SL, Crane GM, Gurlek A, Miller MJ, Yasko AW, Yaszemski MJ. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(dl-lactic-co-glycolic acid) foams implanted into the rat mesentery. J Biomed Mater Res. 1997;36:1–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Mano JF, Reis RL, Cunha AM. Effects of moisture and degradation time over the mechanical dynamical performance of starch-based biomaterials. J Appl Polym Sci. 2000;78:2345–57.CrossRefGoogle Scholar
  26. 26.
    Kim H. Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation. J Biomed Mater Res. 2007;83A:169–77.CrossRefGoogle Scholar
  27. 27.
    Azevedo MC, Reis RL, Claase MB, Grijpma DW, Feijen J. Development and properties of polycaprolactone/hydroxyapatite composite biomaterials. J Mater Sci Mater Med. 2003;14:103–7.CrossRefPubMedGoogle Scholar
  28. 28.
    Shin B, Lee S, Shin Y, Balakrishanan S, Rayan R. Rheological, mechanical and biodegradation studies on blends of thermoplastic starch and polycaprolactone. Polym Eng Sci. 2004;44:1429–38.CrossRefGoogle Scholar
  29. 29.
    Chastain SR, Kundu AK, Dhar S, Calvert J, Putnam AJ. Adhesion of mesenchymal stem cells to polymer scaffolds occurs via distinct ECM ligands and controls their osteogenic differentiation. J Biomed Mater Res. 2006;78A:73–85.CrossRefGoogle Scholar
  30. 30.
    Neuss S, Apel C, Buttler P, Denecke B, Dhanasingh A, Ding X, et al. Assessment of stem cell/biomaterial combinations for stem cell-based tissue engineering. Biomaterials. 2008;29:302–13.CrossRefPubMedGoogle Scholar
  31. 31.
    Tan PS, Teoh SH. Effect of stiffness of polycaprolactone (PCL) membrane on cell proliferation. Mater Sci Eng C. 2007;27:304–8.CrossRefGoogle Scholar
  32. 32.
    Shi K, Kokini JL, Huang Q. Engineering zein films with controlled surface morphology and hydrophilicity. J Agric Food Chem. 2009;57:2186–92.CrossRefPubMedGoogle Scholar
  33. 33.
    Lange R, Lüthen F, Beck U, Rychly J, Baumann A, Nebe B. Cell–extracellular matrix interaction and physico-chemical characteristics of titanium surfaces depend on the roughness of the material. Biomol Eng. 2002;19:255–61.CrossRefPubMedGoogle Scholar
  34. 34.
    Marletta G, Ciapetti G, Satriano C, Perut F, Salerno M, Baldini N. Improved osteogenic differentiation of human marrow stromal cells cultured on ion-induced chemically structured poly-ε-caprolactone. Biomaterials. 2007;28(6):1132–40.CrossRefPubMedGoogle Scholar
  35. 35.
    Salerno A, Iannace S, Netti PA. Open-pore biodegradable foams prepared via gas foaming and microparticulate templating. Macromol Biosci. 2008;8:655–64.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Aurelio Salerno
    • 1
    • 2
  • Maria Oliviero
    • 2
  • Ernesto Di Maio
    • 3
  • Paolo A. Netti
    • 1
    • 3
  • Cristina Rofani
    • 4
  • Alessia Colosimo
    • 5
  • Valentina Guida
    • 6
    • 7
  • Bruno Dallapiccola
    • 6
    • 7
  • Paolo Palma
    • 8
  • Emidio Procaccini
    • 8
  • Anna C. Berardi
    • 4
  • Francesco Velardi
    • 8
  • Anna Teti
    • 9
  • Salvatore Iannace
    • 2
  1. 1.Interdisciplinary Research Centre on Biomaterials (CRIB) and Italian Institute of Technology (IIT)NaplesItaly
  2. 2.Institute of Composite and Biomedical Materials, National Research Council (IMCB-CNR)NaplesItaly
  3. 3.Department of Materials and Production EngineeringUniversity of Naples Federico IINaplesItaly
  4. 4.Stem Cells LaboratoryBambino Gesù Children’s Hospital, Scientific Institute (IRCCS)RomeItaly
  5. 5.Department of Comparative Biomedical ScienceUniversity of TeramoTeramoItaly
  6. 6.IRCCS-CSS San Giovanni Rotondo and CSS Mendel InstituteRomeItaly
  7. 7.Department of Experimental Medicine and PathologyUniversity “La Sapienza”RomeItaly
  8. 8.NeurosurgeryBambino Gesù Children’s Hospital, Scientific Institute (IRCCS)RomeItaly
  9. 9.Department of Experimental MedicineUniversity of L’AquilaL’AquilaItaly

Personalised recommendations