Skip to main content
Log in

Formation of calcium deficient HAp/collagen composites by hydrolysis of α-TCP

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Bone-like composites containing calcium deficient hydroxyapatite (CDHAp) were formed by the hydrolysis of alpha-tricalcium phosphate (α-TCP) in the presence of type I collagen. CDHAp-collagen composites were synthesized using two techniques. In one technique α-TCP was mixed with non-milled (as-received) collagen prior to the addition of the aqueous solution. In the second, the collagen was milled with α-TCP in heptane at room temperature prior to its conversion to CDHAp. The effect of milling strongly facilitates the formation of CDHAp at physiological temperature. The proportion of milled collagen between 5 and 20 wt% present in the α-TCP/collagen composites has no significant effect on the rate of CDHAp formation. Variations in pH and in calcium and phosphate concentrations were determined as a function of collagen processing and variations specific to the presence of collagen were discerned. Compared to CDHAp or to composites containing non-milled collagen, diametrical and compressive strengths of CDHAp increased in the presence of milled collagen. Lack of collagen dispersion and incomplete formation of CDHAp during 48 h were the bases for reduced strengths of composites containing non-milled collagen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yubao L, Xingdong Z, De Groot K. Hydrolysis and phase transition of alpha-tricalcium phosphate. Biomaterials. 1997;18:737–41.

    Article  Google Scholar 

  2. Kurashina K, Ogiso A, Kotani A, Takeuchi H, Hirano M. Histological and microradiographic evaluation of hydrated and hardened α-tricalcium phosphate/calcium phosphate dibasic mixtures. Biomaterials. 1994;15:429–32.

    Article  CAS  PubMed  Google Scholar 

  3. Monma H, Kanazawa T. The hydration of α-tricalcium phosphate. J Ceram Soc Jpn. (yogio-kyokishi). 1976;84:209–13.

    CAS  Google Scholar 

  4. TenHuisen KS, Brown PW. Hydrolysis of α-tricalcium phosphate in NaF solutions. Biomaterials. 1999;25:427–34.

    Article  Google Scholar 

  5. Leamy P, Brown PW, TenHuisen K, Randall C. Fluoride uptake by hydroxyapatite formed by the hydrolysis of α-tricalcium phosphate. J Biomed Mater Res. 1998;42:458–64.

    Article  CAS  PubMed  Google Scholar 

  6. Nakahira A, Sakamoto K, Yamaguchi S, Kaneno M, Takeda S, Okazaki M. Novel synthesis method of hydroxyapatite whiskers by hydrolysis of α-tricalcium phosphate in mixtures of water and organic solvent. J Am Ceram Soc. 1999;82:2029–32.

    Article  CAS  Google Scholar 

  7. Durucan C, Brown PW. Reactivity of α-tricalcium phosphate. J Mater Sci. 2002;37:963–9.

    Article  CAS  Google Scholar 

  8. Miyata T, Taira T, Noishiki Y. Collagen engineering for biomaterial use. Clin Mater. 1992;9:139–48.

    Article  CAS  PubMed  Google Scholar 

  9. Meena C, Mengi SA, Deshpande SG. Biomedical and industrial applications of collagen. Proc Indian Acad Sci Chem Sci. 1999; 111:319–29.

    Google Scholar 

  10. McPherson JM. Utility of collagen-based vehicles in delivery of growth factors for hard and soft tissue wound repair. Clin Mater. 1992;9:225–34.

    Article  CAS  PubMed  Google Scholar 

  11. Katthagen BD, Mittelmeier H. Bone regeneration with collagen apatite. Adv Biomater 1986; 6:39–44.

    Google Scholar 

  12. Sotome S, Uemura T, Kikuchi M, Chen J, Itoh S, Tanaka J, Tateishi T, Shinomiya K. Synthesis and in vivo evaluation of a novel hydroxyapatite/collagen—alginate as a bone filler and a drug delivery carrier of bone morphogenetic protein. Mater Sci Eng C. 2004;24:341–7.

    Article  Google Scholar 

  13. Silva CC, Thomazini D, Pinheiro AG, Aranha N, Figueiro SD, Goes JC, Sombra ASB. Collagen-hydroxyapatite films: piezoelectric properties. Mater Sci Eng B. 2001;86:210–8.

    Article  Google Scholar 

  14. Qin Q, Swain M. A micro-mechanics model of dentin mechanical properties Biomaterials. 2004; 25(20):5081–90.

  15. Rhee S, Tanaka J. Hydroxyapatite coating on a collagen membrane by a biomimetic method. J Am Ceram Soc. 1998;81:3029–31.

    Article  CAS  Google Scholar 

  16. Rhee S, Tanaka J. Effect of citric acid on the nucleation of hydroxyapatite in a simulated body fluid. Biomaterials. 1999;20:2155–60.

    Article  CAS  PubMed  Google Scholar 

  17. Lickorish D, John AM, Werkmeister A, Glattauer V, Howlett C. Collagen-hydroxyapatite composite prepared by biomimetic process. J Biomed Mater Res A. 2004;68:19–27.

    Article  PubMed  Google Scholar 

  18. Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials. 2001;22:1705–11.

    Article  CAS  PubMed  Google Scholar 

  19. Sena LA, Serricella P, Borojevic R, Rossi A, Soares GA. Synthesis and characterization of hydroxyapatite on collagen gel. Key Eng Mater. 2004;254–256:493–6.

    Article  Google Scholar 

  20. TenHuisen KS, Martin RI, Klimkiewicz M, Brown PW. Formation and properties of a synthetic bone composite: hydroxyapatite-collagen. J Biomed Mater Res. 1995;29:803–10.

    Article  CAS  PubMed  Google Scholar 

  21. TenHuisen KS, Brown PW. Effects of collagen and gelatin on the formation of cementitious hydroxyapatite–protein composites at 38°C. In: Southern biomedical engineering conference—proceedings, 1996, pp 174–7.

  22. Roveri N, Falini G, Sidoti MC, Tampieri A, Landi E, Sandri M, Parma B. Biologically inspired growth of hydroxyapatite nanocrystals inside self-assembled collagen fibers. Mater Sci Eng C. 2003;23:441–6.

    Article  Google Scholar 

  23. Rhee S, Lee J, Tanaka J. Nucleation of hydroxyapatite crystal through chemical interaction with collagen. J Am Ceram Soc. 2000;83:2890–2.

    Article  CAS  Google Scholar 

  24. Sato K, Kumagai Y, Tanaka J. Apatite formation on organic monolayers in simulated body environment. J Biomed Mater Res. 2000;50:16–20.

    Article  CAS  PubMed  Google Scholar 

  25. Girija EK, Yokogawa Y, Nagata F. Influence of carboxyl groups present in the mineralizing medium in the biomimetic precipitation of apatite on collagen. Key Eng Mater. 2004;254–256:399–402.

    Article  Google Scholar 

  26. Kikuchi M, Ikoma T, Itoh S, Matsumoto HN, Koyama Y, Takakuda K, Shinomiya K, Tanaka J. Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen. Compos Sci Technol. 2004;64:819–25.

    Article  CAS  Google Scholar 

  27. Zhang L, Feng X, Liu H, Qian D, Zhang L, Yu X, Cui F. Hydroxyapatite/collagen composite materials formation in simulated body fluid environment. Mater Lett. 2004;58:719–22.

    Article  CAS  MATH  Google Scholar 

  28. Koutsoukos PG, Nancollas GH. Mineralization of collagen in vitro. Colloids Surf. 1987;28:95–108.

    Article  CAS  Google Scholar 

  29. Zhang W, Huang Z, Liao S, Cui F. Nucleation sites of calcium phosphate crystals during collagen mineralization. J Am Ceram Soc. 2003;86:1052–4.

    Article  CAS  Google Scholar 

  30. Zhang W, Liao SS, Cui FZ. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chem Mater. 2003;15:3221–6.

    Article  CAS  Google Scholar 

  31. Sugihara F, Oonishi H, Kushitani S, Mandai Y, Tsuji E. Surface bioactive bone cement using alpha-tricalcium phosphate and collagen. In: Transactions of the annual meeting of the society for biomaterials in conjunction with the international biomaterials symposium, 1991, vol 14, p 188.

  32. Maffia GJ, Selter MA, Cooke PH, Brown EM. Collagen processing. J Am Leather Chem Assoc. 2004;99:64–169.

    Google Scholar 

  33. Durucan C, Brown P. α-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. J Mater Sci Mater Med. 2000;11:365–71.

    Article  CAS  PubMed  Google Scholar 

  34. Rutanick A, Hunter AR, Holden FC. An analysis of the diametrical compression test. Mater Res Stand. 1963;3:283–9.

    Google Scholar 

  35. Thomas MB, Dooremus RH, Jarcho M, Salsbury RL. Dense hydroxyapatite: fatigue and fracture strength after various treatments, from diametrical tests. J Mater Sci. 1980; 15:891–94.

    Google Scholar 

  36. Fernández E, Ginebra MP, Boltong MG, Driessens FCM, Planell JA, Ginebra J, De Maeyer EAP, Verbeeck RMH. Kinetic study of the setting reaction of a calcium phosphate bone cement. J Biomed Mater Res. 1996;32:367–74.

    Article  PubMed  Google Scholar 

  37. Yang Q, Troczynski T, Liu D. Influence of apatite seeds on the synthesis of calcium phosphate cement. Biomaterials. 2002;23:2751–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Touny, A.H., Bhaduri, S. & Brown, P.W. Formation of calcium deficient HAp/collagen composites by hydrolysis of α-TCP. J Mater Sci: Mater Med 21, 2533–2541 (2010). https://doi.org/10.1007/s10856-010-4113-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4113-6

Keywords

Navigation