Skip to main content

Advertisement

Log in

Development of transferrin functionalized poly(ethylene glycol)/poly(lactic acid) amphiphilic block copolymeric micelles as a potential delivery system targeting brain glioma

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of present study is to conceive a biodegradable poly(ethylene glycol)–polylactide (PEG–PLA) copolymer nanoparticle which can be surface biofunctionalized with ligands via biotin–avidin interactions and used as a potential drug delivery carrier targeting to brain glioma in vivo. For this aim, a new method was employed to synthesize biotinylated PEG–PLA copolymers, i.e., esterification of PEG with biotinyl chloride followed by copolymerization of hetero-biotinylated PEG with lactide. PEG–PLA nanoparticles bearing biotin groups on surface were prepared by nanoprecipitation technique and the functional protein transferrin (Tf) were coupled to the nanoparticles by taking advantage of the strong biotin–avidin complex formation. The flow cytometer measurement demonstrated the targeting ability of the nanoparticles to tumor cells in vitro, and the fluorescence microscopy observation of brain sections from C6 glioma tumor-bearing rat model gave the intuitive proof that Tf functionalized PEG–PLA nanoparticles could penetrate into tumor in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PEG:

Poly(ethylene glycol)

PLA:

Polylactide

Tf:

Transferrin

BBB:

Blood–brain barrier

TfR:

Transferrin receptor

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

GPC:

Gel permeation chromatography

DLS:

Dynamic light scattering

DiI:

1,1′-Dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate

FCS:

Fetal calf serum

References

  1. Pardridge WM. Brain drug targeting: the future of brain drug development. Cambridge University Press, Cambridge; 2001.

  2. Pardridge WM. BBB-Genomics: creating new openings for brain-drug targeting. Drug Discov. 2001;6:381–3.

    Google Scholar 

  3. Sinkula AA, Yalkowsky SH. Rationale for design of biologically reversible drug derivatives: prodrugs. J Pharm Sci. 1975;64:181–210.

    Article  CAS  PubMed  Google Scholar 

  4. Smith JJ. The world of science. Am J Sci. 1999;36:234–5.

    Google Scholar 

  5. Kreuter J. Application of nanoparticles for the delivery of drugs to the brain. Int Congr Ser. 2005;1277:85–94.

    Article  CAS  Google Scholar 

  6. Calvo P, Gouritin B, Chacun H, Desmaële D, D’Angelo J, Noel JP, Georgin D, Fattal E, Andreux JP, Couvreur P. Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res. 2001;18:1157–66.

    Article  CAS  PubMed  Google Scholar 

  7. Tsutsui Y, Tomizawa K, Nagita M, Michiue H, Nishiki T, Ohmori I, Seno M, Matsui HJ. Development of bionanocapsules targeting brain tumors. Control Release. 2007;122:159–64.

    Article  CAS  Google Scholar 

  8. Daniels TR, Delgado T, Helguera G, Penichet ML. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol. 2006;121:159–76.

    Article  CAS  PubMed  Google Scholar 

  9. Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY. Transferrin receptor on endothelium of brain capillaries. Nature. 1984;312:162–3.

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Hall WA. Transferrin receptor on glioblastoma multiforme. J Neurosurg. 1991;74:313–4.

    CAS  PubMed  Google Scholar 

  11. Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier transferrin receptor. Metabolism. 1987;36:892–5.

    Article  CAS  PubMed  Google Scholar 

  12. Fishman JB, Rubin JB, Handrahan JV, Connor JR, Fine RE. Receptor-mediated transcytosis of transferrin across the blood-brain barrier. J Neurosci Res. 1987;18:299–304.

    Article  CAS  PubMed  Google Scholar 

  13. Descamps L, Dehouck MP, Torpier G, Cecchelli R. Receptor-mediated transcytosis of transferrin through blood-brain barrier endothelial cells. Am J Physiol. 1996;270:1149–58.

    Google Scholar 

  14. Hatakeyama H, Akita H, Maruyama K, Suhara T, Harashima H. Factors governing the in vivo tissue uptake of transferrin-coupled polyethylene glycol liposomes in vivo. Int J Pharm. 2004;281:25–33.

    Article  CAS  PubMed  Google Scholar 

  15. Kulkarni RK, Moore EG, Hegyeli AF. Biodegradable poly(lactic acid) polymers. J Biomed Mater Res. 1971;5:169–81.

    Article  CAS  PubMed  Google Scholar 

  16. Leenslag JW, Pennings AJ. Synthesis and morphology of high molecular weight poly (L-lactide), with tin 2-ethylhexanoate. J Makromol Chem. 1987;188:1809–16.

    Article  CAS  Google Scholar 

  17. Sheikh FA, Barakat NAM, Kanjwal MA, Aryal S, Khil MS, Kim HY. Novel self-assembled amphiphilic poly(epsilon-caprolactone) -grafted-poly (vinyl alcohol) nanoparticles: hydrophobic and hydrophilic drugs carrier nanoparticles. J Mater Sci Mater Med. 2009;20:821–31.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Chen XG, Liu CS, Park HJ. Investigation of polymer amphiphilic nanoparticles as antitumor drug carrier. J Mater Sci Mater Med. 2009;20:991–9.

    Article  CAS  PubMed  Google Scholar 

  19. Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx. 2005;2:108–19.

    Article  PubMed  Google Scholar 

  20. Béduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials. 2007;28:4947–67.

    Article  PubMed  Google Scholar 

  21. Gref R, Couvreur P, Barratt G, Mysiakine E. Surface-engineered nanoparticles for multiple ligand coupling. Biomaterials. 2003;24:4529–37.

    Article  CAS  PubMed  Google Scholar 

  22. Roberts MJ, Bentley MD, Harris JM. Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev. 2002;54:459–76.

    Article  CAS  PubMed  Google Scholar 

  23. Scott MC, Robert FP, Robert L, Rick AR, Fiona EB, Martyn CD, Saul JBT, Kevin MS. A novel biotinylated degradable polymer for cell-interactive applications. Biotechnol Bioeng. 1997;58:529–35.

    Google Scholar 

  24. Salem AK, Cannizzaro SM, Davies MC, Tendler SJ, Roberts CJ, Williams PM, Shakesheff KM. Synthesis and characterisation of a degradable poly(lactic acid)-poly(ethylene glycol) copolymer with biotinylated end groups. Biomacromolecules. 2001;2:575–80.

    Article  CAS  PubMed  Google Scholar 

  25. Seth AT, Gilad DE, Frank XG, Martin PS, Robert HB Jr, Robert SL. Tetanus toxin C fragment-conjugated nanoparticles for targeted drug delivery to neurons. Biomaterials. 2007;28:5176–84.

    Article  Google Scholar 

  26. Murakami H, Kobayashi M, Takeuchi H, Kawashima Y. Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles. Powder Technol. 2000;107:137–43.

    Article  CAS  Google Scholar 

  27. Ma WJ, Yuan XB, Kang CS, Su T, Yuan XY, Pu PY, Sheng J. Evaluation of blood circulation of polysaccharide surface-decorated PLA nanoparticles. Carbohydr Polym. 2008;72:75–81.

    Article  CAS  Google Scholar 

  28. Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnish S, Blunk T, Muller RH. ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces. 2000;18:301–13.

    Article  CAS  PubMed  Google Scholar 

  29. Jeong JH, Kim BY, Lee SJ, Kim JD. A novel immobilization technique using a poly(aminoacid) multilayer designed for surface plasmon resonance sensing. Chem Phys Lett. 2006;42:373–7.

    Article  ADS  Google Scholar 

  30. Eavarone DA, Yu X, Bellamkonda RV. Targeted drug delivery to C6 glioma by transferrin-coupled liposomes. J Biomed Mater Res. 2000;51:10–4.

    Article  CAS  PubMed  Google Scholar 

  31. Soni V, Kohli DV, Jain SK. Transferrin coupled liposomes as drug delivery carriers for brain targeting of 5-florouracil. J Drug Target. 2005;13:245–50.

    Article  CAS  PubMed  Google Scholar 

  32. Zhong W, Parkinson JA, Guo M, Sadler PJ. Unusual features for zirconium(IV) binding to human serum transferrin. J Biol Inorg Chem. 2002;7:589–99.

    Article  CAS  PubMed  Google Scholar 

  33. Davies M, Parry JE, Sutcliffe RG. Examination of different preparations of human placental plasma membrane for the binding of insulin transferrin and immunoglobulins. J Reprod Fertil. 1981;63:315–24.

    Article  CAS  PubMed  Google Scholar 

  34. Enns CA, Suomalainen HA, Gebhardt JE, Schröder J, Sussman HH. Human transferrin receptor: expression of the receptor is assigned to chromosome 3. Proc Natl Acad Sci USA. 1982;79:3241–5.

    Article  CAS  ADS  PubMed  Google Scholar 

  35. Ambruosi A, Khalansky AS, Yamamoto H, Gelperina SE, Begley DJ, Kreuter J. Biodistribution of polysorbate 80-coated doxorubicin-loaded [C-14]-poly(butyl cyanoacrylate) nanoparticles after intravenous administration to glioblastoma-bearing rats. J Drug Target. 2006;14:97–105.

    Article  CAS  PubMed  Google Scholar 

  36. Brigger I, Morizet J, Aubert G, Chacun H, Terrier-Lacombe MJ, Couvreur P, Vassal G. Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting. J Pharmacol Exp Ther. 2002;303:928–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by China National Natural Scientific Found (50573056), Tianjin Science and Technology Committee (06YFGZSH00800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu-bo Yuan, Chun-sheng Kang or Didier Betbeder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Wh., Chang, J., Yan, Ch. et al. Development of transferrin functionalized poly(ethylene glycol)/poly(lactic acid) amphiphilic block copolymeric micelles as a potential delivery system targeting brain glioma. J Mater Sci: Mater Med 21, 2673–2681 (2010). https://doi.org/10.1007/s10856-010-4106-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4106-5

Keywords

Navigation