Effects of heat treatment of wood on hydroxylapatite type mineral precipitation and biomechanical properties in vitro

  • J. Rekola
  • L. V. J. Lassila
  • J. Hirvonen
  • M. Lahdenperä
  • R. Grenman
  • A. J. Aho
  • P. K. Vallittu


Wood is a natural fiber reinforced composite. It structurally resembles bone tissue to some extent. Specially heat-treated birch wood has been used as a model material for further development of synthetic fiber reinforced composites (FRC) for medical and dental use. In previous studies it has been shown, that heat treatment has a positive effect on the osteoconductivity of an implanted wood. In this study the effects of two different heat treatment temperatures (140 and 200°C) on wood were studied in vitro. Untreated wood was used as a control material. Heat treatment induced biomechanical changes were studied with flexural and compressive tests on dry birch wood as well as on wood after 63 days of simulated body fluid (SBF) immersion. Dimensional changes, SBF sorption and hydroxylapatite type mineral formation were also assessed. The results showed that SBF immersion decreases the biomechanical performance of wood and that the heat treatment diminishes the effect of SBF immersion on biomechanical properties. With scanning electron microscopy and energy dispersive X-ray analysis it was shown that hydroxylapatite type mineral precipitation formed on the 200°C heat-treated wood. An increased weight gain of the same material during SBF immersion supported this finding. The results of this study give more detailed insight of the biologically relevant changes that heat treatment induces in wood material. Furthermore the findings in this study are in line with previous in vivo studies.


Heat Treatment Simulated Body Fluid Biomechanical Attribute Dimensional Change Flexural Modulus 


  1. 1.
    Bhandari M, Bajammal S, Guyatt G, Griffith L, Busse J, Schünemann H, Einhorn T. Effect of bisphosphonates on periprosthetic bone mineral density after total joint arthroplasty. A meta-analysis. J Bone Joint Surg Am. 2005;87:293–301.CrossRefPubMedGoogle Scholar
  2. 2.
    Engh C, McGovern T, Bobyn J, Harris W. A quantitative evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty. J Bone Joint Surg Am. 1992;74:1009–20.PubMedGoogle Scholar
  3. 3.
    Huiskes R, Weinans H, Dalstra M. Adaptive bone remodeling and biomechanical design considerations for noncemented total hip arthroplasty. Orthopedics. 1989;12:1255–67.PubMedGoogle Scholar
  4. 4.
    Gibson L. Biomechanics of cellular solids. J Biomech. 2005;38:377–99.CrossRefPubMedGoogle Scholar
  5. 5.
    Katz J. Mechanics at hard tissue. Biomechanics: principles and applications. Boca Raton, Florida: CRC Press; 2008. pp. 1–16.Google Scholar
  6. 6.
    Tuusa SMR, Peltola MJ, Tirri T, Lassila LVJ, Vallittu PK. Frontal bone defect repair with experimental glass-fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res B-Appl Biomater. 2007;82B:149–55.CrossRefGoogle Scholar
  7. 7.
    Hautamäki M, Aho A, Alander P, Rekola J, Gunn J, Strandberg N, Vallittu P. Repair of bone segment defects with surface porous fiber-reinforced polymethyl methacrylate (PMMA) composite prosthesis: histomorphometric incorporation model and characterization by SEM. Acta Orthop. 2008;79:555–64.CrossRefPubMedGoogle Scholar
  8. 8.
    Mattila R, Laurila P, Rekola J, Gunn J, Mäntylä T, Aho AJ, Vallittu PK. Bone attachment to glass-fibre-reinforced composite implant with porous surface. Acta Biomater. 2009;5:1639–46.CrossRefPubMedGoogle Scholar
  9. 9.
    Aho A, Hautamäki M, Mattila R, Alander P, Strandberg N, Rekola J, Gunn J, Lassila LV, Vallittu PK. Surface porous fibre-reinforced composite bulk bone substitute. Cell Tissue Bank. 2004;5:213–21.CrossRefPubMedGoogle Scholar
  10. 10.
    Ballo A, Lassila L, Narhi T, Vallittu P. In vitro mechanical testing of glass fiber-reinforced composite used as dental implants. J Contemp Dent Pract. 2008;9:41–8.PubMedGoogle Scholar
  11. 11.
    Tuusa SMR, Peltola M, Tirri T, Puska MA, Röyttä M, Aho H, Sandholm J, Lassila LVJ, Vallittu PK. Reconstruction of critical size calvarial bone defects in rabbits with glass-fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res B-Appl Biomater. 2008;84B:510–9.CrossRefGoogle Scholar
  12. 12.
    Ballo A, Kokkari A, Meretoja V, Lassila L, Vallittu P, Narhi T. Osteoblast proliferation and maturation on bioactive fiber-reinforced composite surface. J Mater Sci Mater Med. 2008;19:3169–77.CrossRefPubMedGoogle Scholar
  13. 13.
    Ballo A, Akca E, Ozen T, Lassila L, Vallittu P, Närhi T. Bone tissue responses to glass fiber-reinforced composite implants–a histomorphometric study. Clin Oral Implants Res. 2009;20:608–15.PubMedGoogle Scholar
  14. 14.
    Tuusa S, Peltola M, Tirri T, Lassila L, Vallittu P. A Review of two animal studies dealing with biological responses to glass-fibre-reinforced composite implants in critical size calvarial bone defects in rabbits. Key Eng Mater. 2007;361–363:471–4.Google Scholar
  15. 15.
    Zhao D, Moritz N, Laurila P, Mattila R, Lassila LV, Strandberg N, Mäntylä T, Vallittu PK, Aro HT. Development of a multi-component fiberreinforced composite implant for load-sharing conditions. Med Eng Phys. 2009;31:461–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Rekola J, Aho AJ, Viitaniemi P, Yli-Urpo A, Hautamäki M, Kukkonen J. Puuluu—modifiotu puu luukorvikkeena (in Finnish: wood-bone–modified wood as a bone substitute). Suomen Ortopedia ja Traumatologia (SOT). 2001;24:542–4.Google Scholar
  17. 17.
    Aho A, Rekola J, Matinlinna J, Gunn J, Tirri T, Viitaniemi P, Vallittu P. Natural composite of wood as replacement material for ostechondral bone defects. J Biomed Mater Res B Appl Biomater. 2007;83:64–71.PubMedGoogle Scholar
  18. 18.
    Rekola J, Aho A, Gunn J, Matinlinna J, Hirvonen J, Viitaniemi P, Vallittu P. The effect of heat treatment of wood on osteoconductivity. Acta Biomater. 2009;5:1596–604.CrossRefPubMedGoogle Scholar
  19. 19.
    Kristen H, Bösch P, Bednar H, Plenk HJ. The effects of dynamic loading on intracalcaneal wood implants and on the tissues surrounding them. Arch Orthop Trauma Surg. 1979;93:287–92.CrossRefPubMedGoogle Scholar
  20. 20.
    Murdoch AH, Mathias KJ, Shepherd DET. Investigation into the material properties of beech wood and cortical bone. Biomed Mater Eng. 2004;14:1–4.PubMedGoogle Scholar
  21. 21.
    Peterlik H, Roschger P, Klaushofer K, Fratzl P. From brittle to ductile fracture of bone. Nat Mater. 2006;5:52–5.CrossRefPubMedADSGoogle Scholar
  22. 22.
    Gross K, Ezerietis E. Juniper wood as a possible implant material. J Biomed Mater Res A. 2003;64:672–83.CrossRefPubMedGoogle Scholar
  23. 23.
    Kristen H, Bösch P, Bednar H, Plenk HJ. Biocompatibility of wood in bone tissue (author’s transl). Arch Orthop Unfallchir. 1977;89:1–14.CrossRefPubMedGoogle Scholar
  24. 24.
    Viitaniemi P, Jämsä S. Puun modifiointi lämpökäsittelyllä (in Finnish: The modification of wood by heat treatment). VTT Publication: Finland; 1996. p. 814.Google Scholar
  25. 25.
    Väkiparta M, Forsback AP, Lassila LV, Jokinen M, Yli-Urpo AUO, Vallittu PK. Biomimetic mineralization of partially bioresorbable glass fiber reinforced composite. J Mater Sci-Mater Med. 2005;16:873–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Väkiparta M, Koskinen M, Vallittu P, Närhi T, Yli-Urpo A. In vitro cytotoxicity of E-glass fiber weave preimpregnated with novel biopolymer. J Mater Sci Mater Med. 2004;15:69–72.CrossRefPubMedGoogle Scholar
  27. 27.
    Lassila L, Nohrström T, Vallittu P. The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites. Biomaterials. 2002;23:2221–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Kokubo T, Kim H, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials. 2003;24:2161–75.CrossRefPubMedGoogle Scholar
  29. 29.
    Kokubo T, Kushitani H, Ohtsuki C, Sakka S. Chemical reaction of bioactive glass and glass ceramics with a simulated body fluid. J Mater Sci Mater Med. 1992;3:79–83.CrossRefGoogle Scholar
  30. 30.
    International Organization for Standardization. Dentistry—Polymer based crown and bridge materials. Vol. 10477:1992(E). ISO: Geneva, Switzerland; 1992.Google Scholar
  31. 31.
    ISO. Dentistry—Denture base polymers. 1567:2001.Google Scholar
  32. 32.
    Torbjörner A, Karlsson S, Syverud M, Hensten-Pettersen A. Carbon fiber reinforced root canal posts. Mechanical and cytotoxic properties. Eur J Oral Sci. 1996;104:605–11.CrossRefPubMedGoogle Scholar
  33. 33.
    ISO. Dentistry-dental silicophosphate cement (handmixed) 2nd ed., Vol. 3824-1984(E). Geneva, Switzerland: ISO; 1984.Google Scholar
  34. 34.
    Pecina H, Paprzycki O. Wechselbeziehungen zwischen der Temperaturbehandlung des Holzes und seiner Benetzbarkeit. Holzforsch Holzverwert. 1988;40:5–8.Google Scholar
  35. 35.
    Vallittu PK. Flexural properties of acrylic resin polymers reinforced with unidirectional and woven glass fibers. J Prosthet Dent. 1999;81:318–26.CrossRefPubMedGoogle Scholar
  36. 36.
    Puska MA, Narhi TO, Aho AJ, Yli-Urpo A, Vallittu PK. Flexural properties of crosslinked and oligomer-modified glass-fibre reinforced acrylic bone cement. J Mater Sci-Mater Med. 2004;15:1037–43.CrossRefPubMedGoogle Scholar
  37. 37.
    Yli-Urpo H, Lassila LVJ, Narhi T, Vallittu PK. Compressive strength and surface characterization of glass ionomer cements modified by particles of bioactive glass. Dental Mater. 2005;21:201–9.CrossRefGoogle Scholar
  38. 38.
    Dyer SR, Lassila LVJ, Jokinen M, Vallittu PK. Effect of cross-sectional design on the modulus of elasticity and toughness of fiber-reinforced composite materials. J Prosthet Dent. 2005;94:219–26.CrossRefPubMedGoogle Scholar
  39. 39.
    Lassila LVJ, Tanner J, Le Bell AM, Narva K, Vallittu PK. Flexural properties of fiber reinforced root canal posts. Dental Mater. 2004;20:29–36.CrossRefGoogle Scholar
  40. 40.
    González P, Serra J, Liste S, Chiussi S, León B, Pérez-Amor M, Martínez-Fernández J, de Arellano-López AR, Varela-Feria FM. New biomorphic SiC ceramics coated with bioactive glass for biomedical applications. Biomaterials. 2003;24:4827–32.CrossRefPubMedGoogle Scholar
  41. 41.
    Tampieri A, Sprio S, Ruffini A, Celotti G, Lesci IG, Roveri N. From wood to bone: multi-step process to covert wood hierarchical structures into biomimetic hydroxyapatite scaffolds for bone tissue engineering. J.Mater.Chem. 2009;19:4973–80.CrossRefGoogle Scholar
  42. 42.
    Audekerecke, Martens M. Mechanical properties of cancellous bone. Natural and living biomaterials. CRC Press: Boca Raton, Florida; 1984. p. 98.Google Scholar
  43. 43.
    Evans F, King A. Biomechanical studies of the musculoskeletal system. Charles C Thomas: Springfield IL; 1961. pp. 49–53.Google Scholar
  44. 44.
    Bonfield W. Elasticity and viscoelasticity of cortical bone and cartilage. Natural and living biomaterials. 1984. pp. 43–60.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • J. Rekola
    • 1
    • 2
    • 3
  • L. V. J. Lassila
    • 1
    • 2
  • J. Hirvonen
    • 4
  • M. Lahdenperä
    • 1
    • 2
  • R. Grenman
    • 3
  • A. J. Aho
    • 1
    • 2
    • 5
  • P. K. Vallittu
    • 1
    • 2
  1. 1.Department of Biomaterials ScienceUniversity of TurkuTurkuFinland
  2. 2.Biocity Turku Biomaterials Research ProgramTurku Clinical Biomaterial Centre—TCBCTurkuFinland
  3. 3.Department of Otolaryngology and Head and Neck SurgeryTurku University HospitalTurkuFinland
  4. 4.Turku PET CentreUniversity of Turku and Turku University HospitalTurkuFinland
  5. 5.Department of Orthopedics and TraumatologyUniversity of TurkuTurkuFinland

Personalised recommendations