Novel electrospun polyurethane/gelatin composite meshes for vascular grafts

  • Nicola Detta
  • Cesare Errico
  • Dinuccio Dinucci
  • Dario Puppi
  • David A. Clarke
  • Gwendolen C. Reilly
  • Federica Chiellini


Novel polymeric micro-nanostructure meshes as blood vessels substitute have been developed and investigated as a potential solution to the lack of functional synthetic small diameter vascular prosthesis. A commercial elastomeric polyurethane (Tecoflex® EG-80A) and a natural biopolymer (gelatin) were successfully co-electrospun from different spinnerets on a rotating mandrel to obtain composite meshes benefiting from the mechanical characteristics of the polyurethane and the natural biopolymer cytocompatibility. Morphological analysis showed a uniform integration of micrometric (Tecoflex®) and nanometric (gelatin) fibers. Exposure of the composite meshes to vapors of aqueous glutaraldehyde solution was carried out, to stabilize the gelatin fibers in an aqueous environment. Uniaxial tensile testing in wet conditions demonstrated that the analyzed Tecoflex®–Gelatin specimens possessed higher extensibility and lower elastic modulus than conventional synthetic grafts, providing a closer matching to native vessels. Biological evaluation highlighted that, as compared with meshes spun from Tecoflex® alone, the electrospun composite constructs enhanced endothelial cells adhesion and proliferation, both in terms of cell number and morphology. Results suggest that composite Tecoflex®–Gelatin meshes could be promising alternatives to conventional vascular grafts, deserving of further studies on both their mechanical behaviour and smooth muscle cell compatibility.


Gelatin Composite Mesh Fibrous Morphology Tetramethylene Ether Gelatin Fiber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Work performed within the framework of the European Network of Excellence “EXPERTISSUES” (Project NMP3-CT-2004-500283) and with the partial financial support by PRIN-2006-prot.2006038548 and FIRB-Italy-Israel-2003-RBIN043BCP. Dr. Marcella Ferri, Dr. Cristina Bartoli are gratefully acknowledged for their contribution to the experimental work and Mr. Piero Narducci for recording SEM images. The authors would also like to acknowledge Velox GmbH, Germany for having kindly provided Tecoflex® EG-80A pellets.


  1. 1.
    Bruns CJ, Neuhof D, Erasmi H, Schmitz-Rixen T. In vivo biomechanical properties of three different graft materials in peripheral vascular surgery. Int J Angiol. 1998;7:52–6.CrossRefGoogle Scholar
  2. 2.
    Edelman ER. Vascular tissue engineering: designer arteries. Circ Res. 1999;85:1115–7.PubMedGoogle Scholar
  3. 3.
    Inoguchi H, Kwon IK, Inoue E, Takamizawa K, Maehara Y, Matsuda T. Mechanical responses of a compliant electrospun poly(l-lactide-co-[epsilon]-caprolactone) small-diameter vascular graft. Biomaterials. 2006;27:1470–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Lemson MS, Tordoir JHM, Daemen MJAP, Kitslaar PJEHM. Intimal hyperplasia in vascular grafts. Eur J Vasc Endovasc Surg. 2000;19:336–50.CrossRefPubMedGoogle Scholar
  5. 5.
    Niklason EL, Langer SR. Advances in tissue engineering of blood vessels and other tissues. Transpl Immunol. 1997;5:303–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI. Electrospun protein fibers as matrices for tissue engineering. Biomaterials. 2005;26:5999–6008.CrossRefPubMedGoogle Scholar
  7. 7.
    Ma Z, Kotaki M, Inai R, Ramakrishna S. Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng. 2005;11:101.CrossRefPubMedGoogle Scholar
  8. 8.
    Shields KJ, Beckman MJ, Bowlin GL, Wayne JS. Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng. 2004;10:1510.PubMedGoogle Scholar
  9. 9.
    Lelah MD, Copper SL. Polyurethane in medicine. Boca Raton, FL, USA: CRC Press; 1987.Google Scholar
  10. 10.
    Detta N, El-Fattah AA, Chiellini E, Walkenström P, Gatenholm P. Biodegradable polymeric micro-nanofibers by electrospinning of polyester/polyether block copolymers. J Appl Polym Sci. 2008;110:253–61.CrossRefGoogle Scholar
  11. 11.
    Guelcher SA. Biodegradable polyurethanes: synthesis and applications in regenerative medicine. Tissue Eng Part B. 2008;14:3.CrossRefGoogle Scholar
  12. 12.
    Matsuda T, Ihara M, Inoguchi H, Kwon IK, Takamizawa K, Kidoaki S. Mechano-active scaffold design of small-diameter artificial graft made of electrospun segmented polyurethane fabrics. J Biomed Mater Res A. 2005;73A:125–31.CrossRefGoogle Scholar
  13. 13.
    Stankus JJ, Soletti L, Fujimoto K, Hong Y, Vorp DA, Wagner WR. Fabrication of cell microintegrated blood vessel constructs through electrohydrodynamic atomization. Biomaterials. 2007;28:2738–46.CrossRefPubMedGoogle Scholar
  14. 14.
    Bélanger M-C, Marois Y, Roy R, Mehri Y, Wagner E, Zhang Z, et al. Selection of a polyurethane membrane for the manufacture of ventricles for a totally implantable artificial heart: blood compatibility and biocompatibility studies. Artif Organs. 2000;24:879–88.CrossRefPubMedGoogle Scholar
  15. 15.
    Abel PU, von Woedtke T, Schulz B, Bergann T, Schwock A. Stability of immobilized enzymes as biosensors for continuous application in vitro and in vivo. J Mol Catal B: Enzym. 1999;7:93–100.CrossRefGoogle Scholar
  16. 16.
    Meijs GF, Rizzardo E, Brandwood A, Gunatillake P, Schindhelm KH. Polyurethane or polyurethane-urea elastomeric compositions. Patent US 5393858, 1995.Google Scholar
  17. 17.
    von Woedtke T, Schlosser M, Urban G, Hartmann V, Jülich WD, Abel PU, et al. The influence of antimicrobial treatments on the cytocompatibility of polyurethane biosensor membranes. Biosens Bioelectron. 2003;19:269–76.CrossRefGoogle Scholar
  18. 18.
    Andrews K, Hunt J. Upregulation of matrix and adhesion molecules induced by controlled topography. J Mater Sci Mater Med. 2008;19:1601–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Thapa A, Miller DC, Webster TJ, Haberstroh KM. Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials. 2003;24:2915–26.CrossRefPubMedGoogle Scholar
  20. 20.
    McGuigan AP, Sefton MV. The influence of biomaterials on endothelial cell thrombogenicity. Biomaterials. 2007;28:2547–71.CrossRefPubMedGoogle Scholar
  21. 21.
    Seifalian Alexander M, Tiwari A, Hamilton G, Salacinski Henryk J. Improving the clinical patency of prosthetic vascular and coronary bypass grafts: the role of seeding and tissue engineering. Artif Organs. 2002;26:307–20.CrossRefPubMedGoogle Scholar
  22. 22.
    Caudroy S, Polette M, Nawrocki-Raby B, Cao J, Toole B, Zucker S, et al. EMMPRIN-mediated MMP regulation in tumor and endothelial cells. Clin Exp Metastasis. 2003;19:697–702.Google Scholar
  23. 23.
    Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M, et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood. 2000;95:3106–12.PubMedGoogle Scholar
  24. 24.
    Li J-M, Shah AM. Intracellular localization and preassembly of the NADPH oxidase complex in cultured endothelial cells. J Biol Chem. 2002;277:19952–60.CrossRefPubMedGoogle Scholar
  25. 25.
    Mukherjee TK, Dinh H, Chaudhuri G, Nathan L. Testosterone attenuates expression of vascular cell adhesion molecule-1 by conversion to estradiol by aromatase in endothelial cells: Implications in atherosclerosis. Proc Natl Acad Sci USA. 2002;99:4055–60.CrossRefPubMedADSGoogle Scholar
  26. 26.
    Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89:e1–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Zucker S, Mirza H, Conner CE, Lorenz AF, Drews MH, Bahou WF, et al. Vascular endothelial growth factor induces tissue factor and matrix metalloproteinase production in endothelial cells: conversion of prothrombin to thrombin results in progelatininase a activation and cell proliferation. Int J Cancer. 1998;75:780–6.CrossRefPubMedGoogle Scholar
  28. 28.
    Choktaweesap N, Arayanarakul K, Aht-ong D, Meechaisue C, Supaphol P. Electrospun gelatin fibers: effect of solvent system on morphology and fiber diameters. Polym J. 2007;39:622–31.CrossRefGoogle Scholar
  29. 29.
    Huang Z-M, Zhang YZ, Ramakrishna S, Lim CT. Electrospinning and mechanical characterization of gelatin nanofibers. Polymer. 2004;45:5361–8.CrossRefGoogle Scholar
  30. 30.
    Song J-H, Kim H-E, Kim H-W. Production of electrospun gelatin nanofiber by water-based co-solvent approach. J Mater Sci Mater Med. 2008;19:95–102.CrossRefPubMedMathSciNetADSGoogle Scholar
  31. 31.
    Zhang YZ, Venugopal J, Huang ZM, Lim CT, Ramakrishna S. Crosslinking of the electrospun gelatin nanofibers. Polymer. 2006;47:2911–7.CrossRefGoogle Scholar
  32. 32.
    Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007;3:321–30.CrossRefPubMedGoogle Scholar
  33. 33.
    Li M, Mondrinos MJ, Chen X, Lelkes PI. Electrospun blends of natural and synthetic polymers as scaffolds for tissue engineering. In: 27th annual international conference. IEEE-EMBS 2005. Engineering in Medicine and Biology Society; 2005.Google Scholar
  34. 34.
    Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S. Electrospun poly([var epsilon]-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials. 2008;29:4532–9.CrossRefPubMedGoogle Scholar
  35. 35.
    Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang Z-M. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res. 2005;72B:156–65.CrossRefGoogle Scholar
  36. 36.
    Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y, et al. A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. Eur Polym J. 2006;42:2013–22.CrossRefGoogle Scholar
  37. 37.
    Cha DI, Kim KW, Chu GH, Kim HY, Lee KH, Bhattaray N. Mechanical behaviors and characterization of electrospun polysulfone/polyurtehane blend nonwovens. Macromol Res. 2006;14:331–7.Google Scholar
  38. 38.
    Kim G, Kim W. Formation of oriented nanofibers using electrospinning. Appl Phys Lett. 2006;88:233101–3.CrossRefADSGoogle Scholar
  39. 39.
    McManus MC, Boland ED, Koo HP, Barnes CP, Pawlowski KJ, Wnek GE, et al. Mechanical properties of electrospun fibrinogen structures. Acta Biomater. 2006;2:19–28.CrossRefPubMedGoogle Scholar
  40. 40.
    Ramdhanie LI, Aubuchon SR, Boland ED, Knapp DC, Barnes CP, Simpson DG, et al. Thermal and mechanical characterization of electrospun blends of poly(lactic acid) and poly(glycolic acid). Polym J. 2006;38:1137–45.CrossRefGoogle Scholar
  41. 41.
    Attard MM, Hunt GW. Hyperelastic constitutive modeling under finite strain. Int J Solids Struct. 2004;41:5327–50.MATHCrossRefGoogle Scholar
  42. 42.
    Ruiz MJG, Gonzalez LYS. Comparison of hyperelastic material models in the analysis of fabrics. Int J Clot Sci Technol. 2006;18:314–25.CrossRefGoogle Scholar
  43. 43.
    Holzapfel GA, Sommer G, Gasser CT, Regitnig P. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol-Heart Circ Physiol. 2005;289:H2048–58.CrossRefPubMedGoogle Scholar
  44. 44.
    Ozolanta I, Tetere G, Purinya B, Kasyanov V. Changes in the mechanical properties, biochemical contents and wall structure of the human coronary arteries with age and sex. Med Eng Phys. 1998;20:523–33.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nicola Detta
    • 1
  • Cesare Errico
    • 1
  • Dinuccio Dinucci
    • 1
  • Dario Puppi
    • 1
  • David A. Clarke
    • 2
  • Gwendolen C. Reilly
    • 2
  • Federica Chiellini
    • 1
  1. 1.Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications (BIOlab), UdR INSTM, Department of Chemistry and Industrial ChemistryUniversity of PisaSan Piero a Grado, PisaItaly
  2. 2.Department of Engineering Materials, Kroto Research InstituteUniversity of SheffieldSheffieldUK

Personalised recommendations