Skip to main content

Advertisement

Log in

Properties of anti-washout-type calcium silicate bone cements containing gelatin

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Novel washout-resistant bone substitute materials consisting of gelatin-containing calcium silicate cements (CSCs) were developed. The washout resistance, setting time, diametral tensile strength (DTS), morphology, and phase composition of the hybrid cements were evaluated. The results indicated that the dominant phase of β-Ca2SiO4 for the SiO2–CaO powders increased with an increase in the CaO content of the sols. After mixing with water, the setting times of the CSCs ranged from 10 to 29 min, increasing with a decrease in the amount of CaO in the sols. Addition of gelatin into the CSC significantly prolonged (P < 0.05) the setting time by about 2 and 8 times, respectively, for 5% and 10% gelatin. However, the presence of gelatin appreciably improved the anti-washout and brittle properties of the cements without adversely affecting mechanical strength. It was concluded that 5% gelatin-containing CSC may be useful as bioactive bone repair materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Siriphannon P, Kameshima Y, Yasumori A, Okada K, Hayashi S. Influence of preparation conditions on the microstructure and bioactivity of α-CaSiO3 ceramics: formation of hydroxyapatite in simulated body fluid. J Biomed Mater Res. 2000;52:30–9.

    Article  CAS  PubMed  Google Scholar 

  2. Sarmento C, Luklinska ZB, Brown L, Anseau M, De Aza PN, De Aza S. In vitro behavior of osteoblastic cells cultured in the presence of pseudowollastonite ceramic. J Biomed Mater Res A. 2004;69:351–8.

    Article  PubMed  CAS  Google Scholar 

  3. Izquierdo-Barba I, Salinas AJ, Vallet-Regí M. In vitro calcium phosphate layer formation on sol-gel glasses of the CaO–SiO2 system. J Biomed Mater Res. 1999;47:243–50.

    Article  CAS  PubMed  Google Scholar 

  4. Kao CT, Shie MY, Huang TH, Ding SJ. Properties of an accelerated mineral trioxide aggregate-like root-end filling material. J Endod. 2009;35:239–42.

    Article  PubMed  Google Scholar 

  5. Ding SJ, Shie MY, Wang CY. Novel fast-setting calcium silicate bone cements with high bioactivity and enhanced osteogenesis in vitro. J Mater Chem. 2009;19:1183–90.

    Article  CAS  Google Scholar 

  6. Wang X, Chen L, Xiang H, Ye J. Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate cement. J Biomed Mater Res B. 2007;81:410–8.

    Google Scholar 

  7. Ishikawa K, Miyamoto Y, Takechi M, Toh T, Kon M, Nagayama M, et al. Non-decay type fast-setting calcium phosphate cement: hydroxyapatite putty containing an increased amount of sodium alginate. J Biomed Mater Res. 1997;36:393–9.

    Article  CAS  PubMed  Google Scholar 

  8. Ito M, Yamagishi T, Yagasaki H, Kafrawy AH. In vitro properties of a chitosan-bonded bone-filling paste: studies on solubility of calcium phosphate compounds. J Biomed Mater Res. 1996;32:95–8.

    Article  CAS  PubMed  Google Scholar 

  9. Fujishiro Y, Takahashi K, Sato T. Preparation and compressive strength of α-tricalcium phosphate/gelatin gel composite cement. J Biomed Mater Res. 2001;54:525–30.

    Article  CAS  PubMed  Google Scholar 

  10. Panzavolta S, Fini M, Nicoletti A, Bracci B, Rubini K, Giardino R, et al. Porous composite scaffolds based on gelatin and partially hydrolyzed α-tricalcium phosphate. Acta Biomater. 2009;5:636–43.

    Article  CAS  PubMed  Google Scholar 

  11. Khairoun I, Driessens FCM, Boltong MG, Planell JA, Wenz R. Addition of cohesion promotors to calcium phosphate cements. Biomaterials. 1999;20:393–8.

    Article  CAS  PubMed  Google Scholar 

  12. Cherng A, Takagi S, Chow LC. Effects of hydroxypropyl methylcellulose and other gelling agents on the handling properties of calcium phosphate cement. J Biomed Mater Res. 1997;35:273–7.

    Article  CAS  PubMed  Google Scholar 

  13. Olsen D, Yang C, Bodo M, Chang R, Leigh S, Baez J, et al. Recombinant collagen and gelatin for drug delivery. Adv Drug Delivery Rev. 2003;55:1547–67.

    Article  CAS  Google Scholar 

  14. Fratzl P, Gupta HS, Paschalis EP, Roschger P. Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem. 2004;14:2115–23.

    Article  CAS  Google Scholar 

  15. Shie MY, Chen CH, Wang CY, Chiang TY, Ding SJ. Immersion behavior of gelatin-containing calcium phosphate cement. Acta Biomater. 2008;4:646–55.

    Article  CAS  PubMed  Google Scholar 

  16. Ding SJ. Preparation and properties of chitosan/calcium phosphate composites for bone repair. Dent Mater J. 2006;25:706–12.

    Article  CAS  PubMed  Google Scholar 

  17. Pan Z, Jiang P, Fan Q, Ma B, Cai H. Mechanical and biocompatible influences of chitosan fiber and gelatin on calcium phosphate cement. J Biomed Mater Res B. 2007;82:246–52.

    Google Scholar 

  18. Xu HHK, Takagi S, Quinn JB, Chow LC. Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration. J Biomed Mater Res A. 2004;68:725–34.

    Article  PubMed  CAS  Google Scholar 

  19. ISO 9917-1, Dentistry-water-based cements part 1: powder/liquid acid-base cements. International Standard Organization; 2003.

  20. Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27:964–73.

    Article  CAS  PubMed  Google Scholar 

  21. Kim IS, Kumta PN. Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder. Mater Sci Eng B. 2004;111:232–6.

    Article  CAS  Google Scholar 

  22. Ikesue A, Yoshida K, Yamamoto T, Yamaga I. Optical scattering centers in polycrystalline Nd:YAG Laser. J Am Ceram Soc. 1997;80:1517–22.

    Article  CAS  Google Scholar 

  23. Older I. Hydration, setting and hardening of Portand cement. In: Hewlett PC, editor. Lea’s chemistry of cement and concrete. 4th ed. Oxford: Butterworth-Heinemann; 2007. p. 241–97.

    Google Scholar 

  24. Bentz DP. Cement hydration: building bridges and dams at the microstructure level. Mater Struct. 2007;40:397–404.

    Article  CAS  Google Scholar 

  25. Tabata Y, Ikada Y. Protein release from gelatin matrices. Adv Drug Deliv Rev. 1998;31:287–301.

    Article  CAS  PubMed  Google Scholar 

  26. Wang XH, Ma JB, Wang Y, He BL. Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements. Biomaterials. 2001;22:2247–55.

    Article  CAS  PubMed  Google Scholar 

  27. Takechi M, Miyamoto Y, Ishikawa K, Yuasa M, Nagayama M, Kon M, et al. Non-decay type fast-setting calcium phosphate cement using chitosan. J Mater Sci: Mater Med. 1996;7:317–22.

    Article  CAS  Google Scholar 

  28. Zhao W, Wang J, Zhai W, Wang Z, Chang J. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials. 2005;26:6113–21.

    Article  CAS  PubMed  Google Scholar 

  29. Gou Z, Chang J, Zhai W, Wang J. Study on the self-setting property and the in vitro bioactivity of β-Ca2SiO4. J Biomed Mater Res B. 2005;73:244–51.

    Google Scholar 

  30. Wang XH, Feng QL, Cui FZ, Ma JB. The effects of S-chitosan on the physical properties of calcium phosphate cements. J Bioact Compat Polym. 2003;18:45–57.

    Article  MATH  Google Scholar 

  31. Fukase Y, Eanes ED, Takagi S, Chow LC, Brown WE. Setting reactions and compressive strengths of calcium phosphate cements. J Dent Res. 1990;69:1852–6.

    CAS  PubMed  Google Scholar 

  32. Chow LC, Hirayama S, Takagi S, Parry E. Diametral tensile strength and compressive strength of a calcium phosphate cement: effect of applied pressure. J Biomed Mater Res. 2000;53:511–7.

    Article  CAS  PubMed  Google Scholar 

  33. Ginebra MP, Fernandez E, De Maeyer EAP, Verbeeck RMH, Boltong MG, Ginebra J, et al. Setting reaction and hardening of an apatite calcium phosphate cement. J Dent Res. 1997;76:905–12.

    Article  CAS  PubMed  Google Scholar 

  34. Bowman SM, Zeind J, Gibson LJ, Hayes WC, McMahon TA. The tensile behavior of demineralized bovine cortical bone. J Biomech. 1996;29:1497–501.

    Article  CAS  PubMed  Google Scholar 

  35. Dorozhkin SV. Calcium orthophosphate cements for biomedical application. J Mater Sci. 2008;43:3028–57.

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge with appreciation the support of this research by the National Science Council of the Republic of China under the grant No. NSC 97-2320-B-040-001-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinn-Jyh Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, CC., Lai, MH., Wang, WC. et al. Properties of anti-washout-type calcium silicate bone cements containing gelatin. J Mater Sci: Mater Med 21, 1057–1068 (2010). https://doi.org/10.1007/s10856-009-3948-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3948-1

Keywords

Navigation