Properties of anti-washout-type calcium silicate bone cements containing gelatin

  • Chun-Cheng Chen
  • Meng-Heng Lai
  • Wei-Chung Wang
  • Shinn-Jyh Ding


Novel washout-resistant bone substitute materials consisting of gelatin-containing calcium silicate cements (CSCs) were developed. The washout resistance, setting time, diametral tensile strength (DTS), morphology, and phase composition of the hybrid cements were evaluated. The results indicated that the dominant phase of β-Ca2SiO4 for the SiO2–CaO powders increased with an increase in the CaO content of the sols. After mixing with water, the setting times of the CSCs ranged from 10 to 29 min, increasing with a decrease in the amount of CaO in the sols. Addition of gelatin into the CSC significantly prolonged (P < 0.05) the setting time by about 2 and 8 times, respectively, for 5% and 10% gelatin. However, the presence of gelatin appreciably improved the anti-washout and brittle properties of the cements without adversely affecting mechanical strength. It was concluded that 5% gelatin-containing CSC may be useful as bioactive bone repair materials.


Gelatin Simulated Body Fluid Calcium Silicate Mineral Trioxide Aggregate Cement Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge with appreciation the support of this research by the National Science Council of the Republic of China under the grant No. NSC 97-2320-B-040-001-MY2.


  1. 1.
    Siriphannon P, Kameshima Y, Yasumori A, Okada K, Hayashi S. Influence of preparation conditions on the microstructure and bioactivity of α-CaSiO3 ceramics: formation of hydroxyapatite in simulated body fluid. J Biomed Mater Res. 2000;52:30–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Sarmento C, Luklinska ZB, Brown L, Anseau M, De Aza PN, De Aza S. In vitro behavior of osteoblastic cells cultured in the presence of pseudowollastonite ceramic. J Biomed Mater Res A. 2004;69:351–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Izquierdo-Barba I, Salinas AJ, Vallet-Regí M. In vitro calcium phosphate layer formation on sol-gel glasses of the CaO–SiO2 system. J Biomed Mater Res. 1999;47:243–50.CrossRefPubMedGoogle Scholar
  4. 4.
    Kao CT, Shie MY, Huang TH, Ding SJ. Properties of an accelerated mineral trioxide aggregate-like root-end filling material. J Endod. 2009;35:239–42.CrossRefPubMedGoogle Scholar
  5. 5.
    Ding SJ, Shie MY, Wang CY. Novel fast-setting calcium silicate bone cements with high bioactivity and enhanced osteogenesis in vitro. J Mater Chem. 2009;19:1183–90.CrossRefGoogle Scholar
  6. 6.
    Wang X, Chen L, Xiang H, Ye J. Influence of anti-washout agents on the rheological properties and injectability of a calcium phosphate cement. J Biomed Mater Res B. 2007;81:410–8.Google Scholar
  7. 7.
    Ishikawa K, Miyamoto Y, Takechi M, Toh T, Kon M, Nagayama M, et al. Non-decay type fast-setting calcium phosphate cement: hydroxyapatite putty containing an increased amount of sodium alginate. J Biomed Mater Res. 1997;36:393–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Ito M, Yamagishi T, Yagasaki H, Kafrawy AH. In vitro properties of a chitosan-bonded bone-filling paste: studies on solubility of calcium phosphate compounds. J Biomed Mater Res. 1996;32:95–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Fujishiro Y, Takahashi K, Sato T. Preparation and compressive strength of α-tricalcium phosphate/gelatin gel composite cement. J Biomed Mater Res. 2001;54:525–30.CrossRefPubMedGoogle Scholar
  10. 10.
    Panzavolta S, Fini M, Nicoletti A, Bracci B, Rubini K, Giardino R, et al. Porous composite scaffolds based on gelatin and partially hydrolyzed α-tricalcium phosphate. Acta Biomater. 2009;5:636–43.CrossRefPubMedGoogle Scholar
  11. 11.
    Khairoun I, Driessens FCM, Boltong MG, Planell JA, Wenz R. Addition of cohesion promotors to calcium phosphate cements. Biomaterials. 1999;20:393–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Cherng A, Takagi S, Chow LC. Effects of hydroxypropyl methylcellulose and other gelling agents on the handling properties of calcium phosphate cement. J Biomed Mater Res. 1997;35:273–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Olsen D, Yang C, Bodo M, Chang R, Leigh S, Baez J, et al. Recombinant collagen and gelatin for drug delivery. Adv Drug Delivery Rev. 2003;55:1547–67.CrossRefGoogle Scholar
  14. 14.
    Fratzl P, Gupta HS, Paschalis EP, Roschger P. Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem. 2004;14:2115–23.CrossRefGoogle Scholar
  15. 15.
    Shie MY, Chen CH, Wang CY, Chiang TY, Ding SJ. Immersion behavior of gelatin-containing calcium phosphate cement. Acta Biomater. 2008;4:646–55.CrossRefPubMedGoogle Scholar
  16. 16.
    Ding SJ. Preparation and properties of chitosan/calcium phosphate composites for bone repair. Dent Mater J. 2006;25:706–12.CrossRefPubMedGoogle Scholar
  17. 17.
    Pan Z, Jiang P, Fan Q, Ma B, Cai H. Mechanical and biocompatible influences of chitosan fiber and gelatin on calcium phosphate cement. J Biomed Mater Res B. 2007;82:246–52.Google Scholar
  18. 18.
    Xu HHK, Takagi S, Quinn JB, Chow LC. Fast-setting calcium phosphate scaffolds with tailored macropore formation rates for bone regeneration. J Biomed Mater Res A. 2004;68:725–34.CrossRefPubMedGoogle Scholar
  19. 19.
    ISO 9917-1, Dentistry-water-based cements part 1: powder/liquid acid-base cements. International Standard Organization; 2003.Google Scholar
  20. 20.
    Jones JR, Ehrenfried LM, Hench LL. Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials. 2006;27:964–73.CrossRefPubMedGoogle Scholar
  21. 21.
    Kim IS, Kumta PN. Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder. Mater Sci Eng B. 2004;111:232–6.CrossRefGoogle Scholar
  22. 22.
    Ikesue A, Yoshida K, Yamamoto T, Yamaga I. Optical scattering centers in polycrystalline Nd:YAG Laser. J Am Ceram Soc. 1997;80:1517–22.CrossRefGoogle Scholar
  23. 23.
    Older I. Hydration, setting and hardening of Portand cement. In: Hewlett PC, editor. Lea’s chemistry of cement and concrete. 4th ed. Oxford: Butterworth-Heinemann; 2007. p. 241–97.Google Scholar
  24. 24.
    Bentz DP. Cement hydration: building bridges and dams at the microstructure level. Mater Struct. 2007;40:397–404.CrossRefGoogle Scholar
  25. 25.
    Tabata Y, Ikada Y. Protein release from gelatin matrices. Adv Drug Deliv Rev. 1998;31:287–301.CrossRefPubMedGoogle Scholar
  26. 26.
    Wang XH, Ma JB, Wang Y, He BL. Structural characterization of phosphorylated chitosan and their applications as effective additives of calcium phosphate cements. Biomaterials. 2001;22:2247–55.CrossRefPubMedGoogle Scholar
  27. 27.
    Takechi M, Miyamoto Y, Ishikawa K, Yuasa M, Nagayama M, Kon M, et al. Non-decay type fast-setting calcium phosphate cement using chitosan. J Mater Sci: Mater Med. 1996;7:317–22.CrossRefGoogle Scholar
  28. 28.
    Zhao W, Wang J, Zhai W, Wang Z, Chang J. The self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials. 2005;26:6113–21.CrossRefPubMedGoogle Scholar
  29. 29.
    Gou Z, Chang J, Zhai W, Wang J. Study on the self-setting property and the in vitro bioactivity of β-Ca2SiO4. J Biomed Mater Res B. 2005;73:244–51.Google Scholar
  30. 30.
    Wang XH, Feng QL, Cui FZ, Ma JB. The effects of S-chitosan on the physical properties of calcium phosphate cements. J Bioact Compat Polym. 2003;18:45–57.MATHCrossRefGoogle Scholar
  31. 31.
    Fukase Y, Eanes ED, Takagi S, Chow LC, Brown WE. Setting reactions and compressive strengths of calcium phosphate cements. J Dent Res. 1990;69:1852–6.PubMedGoogle Scholar
  32. 32.
    Chow LC, Hirayama S, Takagi S, Parry E. Diametral tensile strength and compressive strength of a calcium phosphate cement: effect of applied pressure. J Biomed Mater Res. 2000;53:511–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Ginebra MP, Fernandez E, De Maeyer EAP, Verbeeck RMH, Boltong MG, Ginebra J, et al. Setting reaction and hardening of an apatite calcium phosphate cement. J Dent Res. 1997;76:905–12.CrossRefPubMedGoogle Scholar
  34. 34.
    Bowman SM, Zeind J, Gibson LJ, Hayes WC, McMahon TA. The tensile behavior of demineralized bovine cortical bone. J Biomech. 1996;29:1497–501.CrossRefPubMedGoogle Scholar
  35. 35.
    Dorozhkin SV. Calcium orthophosphate cements for biomedical application. J Mater Sci. 2008;43:3028–57.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Chun-Cheng Chen
    • 1
  • Meng-Heng Lai
    • 2
  • Wei-Chung Wang
    • 2
  • Shinn-Jyh Ding
    • 1
    • 2
  1. 1.Department of DentistryChung-Shan Medical University HospitalTaichungTaiwan, Republic of China
  2. 2.Institute of Oral Biology and Biomaterials ScienceChung-Shan Medical UniversityTaichungTaiwan, Republic of China

Personalised recommendations