Advertisement

Effect of the Ca/P ratio on the dielectric properties of nanoscaled substoichiometric hydroxyapatite

  • Mario Quilitz
  • Klaus Steingröver
  • Michael Veith
Article

Abstract

Nanoscaled hydroxyapatite (n-HAp) was prepared by a wet chemical precipitation method, pressed to pellets and sintered at various temperatures between 900 and 1200°C. With input stoichiometries of Ca/P ratios between 1.4 and 2.0, compositions in the substoichiometric range of Ca/P between 1.45(1) and 1.62(3) were determined after preparation. After sintering, final values of the Ca/P ratio between 1.45(8) and 1.66(4) were found. Capacitances and dielectric losses were determined in the frequency range between 20 Hz and 1 MHz and dielectric constants calculated from the capacitances. Dependencies of the dielectric properties on the composition, as well as on sintering temperature and frequencies were investigated. The dielectric constants generally tend to increase with increasing Ca-content. Different behaviour was observed for low frequencies (below 103 Hz) and for compositions far from the stoichiometric point of hydroxyapatite (Ca/P: 1.67). Comparable results were found for dielectric losses.

Keywords

Dielectric Constant Hydroxyapatite Dielectric Property Dielectric Loss Sinter Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

For the ICP/AES measurements we are indebted to Dr. C. Fink-Straube and A. Jung. XRD measurements were performed by R. Karos. In addition M. Quilitz and K. Steingröver acknowledge helpful discussions with M. Sauer. Finally, we thank C. Hartmann for continuously supporting us in the process of publication.

References

  1. 1.
    Hench LL. Bioceramics: from concept to clinic. J Am Ceram Soc. 1991;74:1487–510. doi: 10.1111/j.1151-2916.1991.tb07132.x.CrossRefGoogle Scholar
  2. 2.
    Hench LL. Bioceramics. J Am Ceram Soc. 1998;81:1705–28. doi: 10.1111/j.1151-2916.1998.tb02540.x.CrossRefGoogle Scholar
  3. 3.
    De Groot K. Bioceramics consisting of calcium phosphate salts. Biomaterials. 1980;1:47–50. doi: 10.1016/0142-9612(80)90059-9.CrossRefPubMedGoogle Scholar
  4. 4.
    Passuti N, Daculsi G, Rogez JM, Martin S, Bainuel JV. Macroporous calcium phosphate ceramics performance in human spine fusion. Clin Orthop. 1989;248:169–76.PubMedGoogle Scholar
  5. 5.
    Royer A, Viguie JC, Heughebaert M, Heughebaert JC. Stoichiometry of hydroxyapatite—influence on the flexural strength. J Mater Sci. 1993;4:76–82. doi: 10.1007/BF00122982.Google Scholar
  6. 6.
    Wang PE, Chaki TK. Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. J Mater Sci: Mater Med. 1993;4:150–8. doi: 10.1007/BF00120384.CrossRefGoogle Scholar
  7. 7.
    McConnell D. Apatite, its crystal chemistry, mineralogy, utilization and geological and biologic occurrence. In: Applied mineralogy. Vol. 5. Wien: Springer; 1973.Google Scholar
  8. 8.
    Sergo V, Sbaizero O, Clarke DR. Effect of Ca/P ratio and milling material on the mechanochemical preparation of hydroxyapaptite. Biomaterials. 1997;18:477–82. doi: 10.1016/S0142-9612(96)00147-0.CrossRefPubMedGoogle Scholar
  9. 9.
    Nagai M, Nichino T. Surface conduction of porous hydroxyapatite ceramics at elevated temperatures. Sol St Ionics. 1988;28–30:1456. doi: 10.1016/0167-2738(88)90403-1.CrossRefGoogle Scholar
  10. 10.
    Yamashita K, Owada H, Nakasawa H, Umegaki T, Kanazawa T. Trivalent-cation-substituted calcium oxyhydroxyapatite. J Am Ceram Soc. 1986;69:590–4. doi: 10.1111/j.1151-2916.1986.tb04813.x.CrossRefGoogle Scholar
  11. 11.
    Ewing RC, Weber WJ, Clinard FW. High level radioactive waste. Prog Nucl Energy. 1995;29:63–127. doi: 10.1557/JMR.1995.0243.CrossRefGoogle Scholar
  12. 12.
    Owada H, Yamashita K, Umegaki T, Kanazawa T, Nagai M. Humidity-sensitivity of yttrium substituted apatite ceramics. Sol St Ionics. 1989;35:401. doi: 10.1016/0167-2738(89)90327-5.CrossRefGoogle Scholar
  13. 13.
    Hontsu S, Matsumoto T, Ishii J, Nakamori M, Tabata H, Kawai T. Electrical properties of hydroxyapatite thin films grown by pulsed laser deposition. Thin Solid Films. 1997;295:214–7. doi: 10.1016/S0040-6090(96)09146-8.CrossRefADSGoogle Scholar
  14. 14.
    Kobune M, Mineshige A, Fujii S, Iida H. Preparation of translucent hydroxyapatite ceramics by HIP and their physical properties. J Ceram Soc Jpn. 1997;105:210.Google Scholar
  15. 15.
    Ryaby JT. Clinical effects of electromagnetic and electric fields on fracture healing. Clin Orthop. 1998;355:205–15.Google Scholar
  16. 16.
    Scott G, King JB. A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Jt Surg Am. 1994;76:820.Google Scholar
  17. 17.
    Abeed RI, Naseer M, Abel EW. Capacitively coupled electrical stimulation treatment: results from patients with failed long bone fracture unions. J Orthop Trauma. 1998;12:510–3.CrossRefPubMedGoogle Scholar
  18. 18.
    Oishi M, Onesti ST. Electrical bone graft stimulation for spinal fusion: a review. Neurosurgery. 2000;47:1041–56.CrossRefPubMedGoogle Scholar
  19. 19.
    Goodwin CB, Brighton CT, Guyer RD, Johnson JR, Light KI, Yuan HA. A double-blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine. 1999;24:1349–57. doi: 10.1097/00007632-199907010-00013.CrossRefPubMedGoogle Scholar
  20. 20.
    Otter MW, McLeod KJ, Rubin CT. Effects of electromagnetic fields in experimental fracture repair. Clin Orthop. 1998;335:S90–104.Google Scholar
  21. 21.
    Yamashita K. Enhanced bioactivity of electrically poled hydroxyapatite ceramics and coatings. Mater Sci Forum. 2003;426–432:3237–42. http://www.scientific.net/MSF.426-432.3237.CrossRefGoogle Scholar
  22. 22.
    Fanovich MA, Castro MS, Porto Lopez JM. Analysis of the microstructural evolution in hydroxyapatite ceramics by electrical characterisation. Ceram Int. 1999;25:517–22. doi: 10.1016/S0272-8842(97)00087-4.CrossRefGoogle Scholar
  23. 23.
    Ikoma T, Yamazaki A, Nakamura S, Akao M. Preparation and dielectric property of sintered monoclinic hydroxyapatite. J Mater Sci Lett. 1999;18:1225–8. doi: 10.1023/A:1006610521173.CrossRefGoogle Scholar
  24. 24.
    Khalil MS, Beheri HH, Abdel Fattah WI. Structural and electrical properties of zirconia/hydroxyapatite porous composites. Ceram Int. 2002;28:451–8. doi: 10.1016/S0272-8842(01)00118-3.CrossRefGoogle Scholar
  25. 25.
    Hoepfner TP, Case ED. The porosity dependence of the dielectric constant for sintered hydroxyapatite. J Biomed Mater Res. 2002;60:643–50. doi: 10.1002/jbm.10131.CrossRefPubMedGoogle Scholar
  26. 26.
    Silva CC, Almeida AF, De Oliveira RS, Pinheiro AG, Goes JC, Sombra ASB. Dielectric permittivity and loss of hydroxyapatite screen-printed thick films. J Mater Sci. 2003;38:3713–20. doi: 10.1023/A:1025963728858.CrossRefGoogle Scholar
  27. 27.
    Ishikawa K, Ducheyne P, Radin S. Determination of the Ca/P ratio in calcium-deficient hydroxyapatite using X-ray diffraction analysis. J Mater Sci: Mater Med. 1993;4:165–8. doi: 10.1007/BF00120386.CrossRefGoogle Scholar
  28. 28.
    Benhayoune H, Charlier D, Jallot E, Laquerriere P, Balossier G, Bonhomme P. Evaluation of the Ca/P concentration ratio in hydroxyapatite by STEM-EDXS: influence of the electron irradiation dose and temperature processing. J Phys D Appl Phys. 2001;34:141–7. doi: 10.1088/0022-3727/34/1/321.CrossRefADSGoogle Scholar
  29. 29.
    Katto M, Kurosawa K, Yokotani A, Kubodera S, Kameyama A, Higashiguchi T, et al. Poly-crystallized hydroxyapatite coating deposited by pulsed laser deposition method at room temperature. Appl Surf Sci. 2005;248:365–8. doi: 10.1016/j.apsusc.2005.03.055.CrossRefADSGoogle Scholar
  30. 30.
    Ramesh S, Tan CY, Hamdi M, Sopran I, Teng WD. The influence of Ca/P ratio on the properties of hydroxyapatite bioceramics. SPIE Proc. 2007;6423:64233A. doi: 10.1117/12.779890.
  31. 31.
    Sato M, Tu R, Goto T. Preparation of hydroxyapatite and calcium phosphate films by MOCVD. Mater Transact. 2007;48:3149. doi: 10.2320/matertrans.MRA2007145.CrossRefGoogle Scholar
  32. 32.
    Zhou G, Li Y, Zhang L, Zuo Y, Jansen JA. Preparation and characterization of nano-hydroxyapatite/chitosan/konjac glucomannan composite. J Biomed Mater Res A. 2007;83:931. doi: 10.1002/jbm.a.31414.PubMedGoogle Scholar
  33. 33.
    Wang DG, Chen CZ, Ting H, Lei TQ. Hydroxyapatite coating on Ti6Al4V alloy by a sol-gel method. J Mater Sci: Mater Med. 2008;19:2281. doi: 10.1007/s10856-007-3338-5.CrossRefGoogle Scholar
  34. 34.
    Mahabole MP, Aiyer RC, Ramakrishna CV, Sreedhar B, Khainar RS. Synthesis, characterization and gas sensing property of hydroxyapatite ceramic. Bull Mater Sci. 2005;28:535. doi: 10.1007/BF02706339.CrossRefGoogle Scholar
  35. 35.
    Salas J, Benzo Z, Gonzalez G, Marcano E, Gomez C. Effect of Ca/P ratio and milling material on the mechanochemical preparation of hydroxyapaptite. J Mater Sci: Mater Med. 2009. doi: 10.1007/s10856-009-3804-3.
  36. 36.
    Silva CC, Graca MPF, Valente MA, Goes JC, Sombra ASB. Microwave preparation, structure and electrical properties of calcium-sodium-phosphate biosystem. J Non Cryst Solids. 2006;352:3512. doi: 10.1016/j.jnoncrysol.2006.02.111.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mario Quilitz
    • 1
  • Klaus Steingröver
    • 2
  • Michael Veith
    • 1
  1. 1.INM—Leibniz-Institute for New MaterialsSaarbrückenGermany
  2. 2.Bühler PARTEC GmbHSaarbrückenGermany

Personalised recommendations