Skip to main content

Advertisement

Log in

Calcium and titanium release in simulated body fluid from plasma electrolytically oxidized titanium

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The release of titanium and calcium species to a simulated body fluid (SBF) at 37°C has been investigated for titanium treated by dc plasma electrolytic oxidation (PEO) in three different electrolytes, namely phosphate, silicate and calcium- and phosphorus-containing. The average rate of release of titanium over a 30 day period in immersion tests, determined by solution analysis, was in the range ~1.5–2.0 pg cm−2 s−1. Calcium was released at an average rate of ~11 pg cm−2 s−1. The passive current densities, determined from potentiodynamic polarization measurements, suggested titanium losses of a similar order to those determined from immersion tests. However, the possibility of film formation does not allow for discrimination between the metal releases due to electrochemical oxidation of titanium and chemical dissolution of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mishra AK, Davidson JA, Poggie RA, Kovacs P, FitzGerald TJ. Mechanical and tribological properties and biocompatibility of diffusion hardened Ti–13Nb–13Zr—a new titanium alloy for surgical implants. ASTM Spec Tech Publication. 1996;1272:96–112.

    Google Scholar 

  2. Latour RA Jr. Future materials for foot surgery. Clin Podiatr Med Surg. 1995;12:519–44.

    PubMed  Google Scholar 

  3. Hübler R. Hardness and corrosion protection enhancement behaviour of surgical implant surfaces treated with ceramic thin films. Surf Coat Technol. 1999;116–119:1111–5.

    Article  Google Scholar 

  4. Khan MA, Williams RL, Williams DF. Titanium alloys—corrosion and wear studies in-vitro. Trans Annual Meet Soc Biomater. 1996;2:480–5.

    Google Scholar 

  5. Gil FJ, Fernandez E, Manero JM, Planell JA, Sabria J, Cortada M, et al. A study of the abrasive resistance of metal alloys with applications in dental prosthetic fixators. Bio-med Mater Eng. 1995;5:161–7.

    CAS  Google Scholar 

  6. Yoshinari M, Oda Y, Kato T, Okuda K. Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials. 2001;22:2043–8.

    Article  CAS  PubMed  Google Scholar 

  7. Heidenau F, Mittelmeier W, Detsch R, Haenle M, Stenzel F, Ziegler G, et al. A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization. J Mater Sci: Mater Med. 2005;16:883–8.

    Article  CAS  Google Scholar 

  8. Petrini P, Arciola CR, Pezzali I, Bozzini S, Montanaro L, Tanzi MC, et al. Antibacterial activity of zinc modified titanium oxide surface. Int J Artif Organs. 2006;29:434–42.

    CAS  PubMed  Google Scholar 

  9. Gopal J, Muraleedharan P, George P, Khatak HS. Investigation of the antibacterial properties of an anodised titanium alloy. Trends Biomater Artif Organs. 2003;17:13–8.

    Google Scholar 

  10. Giordano C, Visai L, Pedeferri MP, Chiesa R, Cigada A. Antibacterial treatments on titanium for implantology. In: Proceed Biomed Pharmacotherapy Int Congress, Pisa, October 10–13, vol. 60, 2006. p. 472–6.

  11. Frauchiger VM, Schlottig F, Gasser B, Textor M. Anodic plasma-chemical treatment of CP titanium surfaces for biomedical applications. Biomaterials. 2004;25:593–606.

    Article  CAS  PubMed  Google Scholar 

  12. Wei D, Zhou Y, Wang Y, Jia D. Characteristic of microarc oxidized coatings on titanium alloy formed in electrolytes containing chelate complex and nano-HA. Appl Surf Sci. 2007;253:5045–50.

    Article  CAS  ADS  Google Scholar 

  13. Wei D, Zhou Y, Jia D, Wang Y. Characteristic and in vitro bioactivity of a microarc-oxidized TiO2-based coating after chemical treatment. Acta Biomater. 2007;3:817–27.

    Article  CAS  PubMed  Google Scholar 

  14. Liu F, Wang F, Shimizu T, Igarashi K, Zhao L. Formation of hydroxyapatite on Ti–6Al–4V alloy by microarc oxidation and hydrothermal treatment. Surf Coat Technol. 2005;199:220–4.

    Article  CAS  Google Scholar 

  15. Nie X, Leyland A, Matthews A. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis. Surf Coat Technol. 2000;125:407–14.

    Article  CAS  Google Scholar 

  16. Matykina E, Monfort F, Berkani A, Skeldon P, Thompson GE, Gough J. Characterization of spark-anodized titanium for biomedical applications. J Electrochem Soc. 2007;154:C279–85.

    Article  CAS  Google Scholar 

  17. Matykina E, Montuori M, Gough J, Monfort F, Berkani A, Skeldon P, et al. Spark anodizing of titanium for biomedical applications. Trans Inst Met Finish. 2006;84:125–33.

    Article  CAS  Google Scholar 

  18. Bianchi G, Malaguzzi S. Cathodic reduction of oxygen and hydrogen peroxide on titanium. In: Proceed 1st Int Congr Metallic Corr. 1961. p. 78–83.

  19. Matykina E, Skeldon P, Thompson GE. Fundamental and practical evaluation of plasma electrolytic oxidation coatings of titanium. Surf Eng. 2007;23:412–4

    Article  CAS  Google Scholar 

  20. Shukla AK, Balasubramaniam R. Effect of surface treatment on electrochemical behavior of CP Ti, Ti–6Al–4V and Ti–13Nb–13Zr alloys in simulated human body fluid. Corros Sci. 2006;48:1696–720.

    Article  CAS  Google Scholar 

  21. Ibris N, Mirza Rosca JC. EIS study of Ti and its alloys in biological media. J Electroanal Chem. 2002;526:53–62.

    Article  CAS  Google Scholar 

  22. Reclaru L, Meyer J-M. Effects of fluorides on titanium and other dental alloys in dentistry. Biomaterials. 1998;19:85–92.

    Article  CAS  PubMed  Google Scholar 

  23. Solar RJ, Pollack SR, Korostoff E. In vitro corrosion testing of titanium surgical implant alloys: an approach to understanding titanium release from implants. J Biomed Mater Res. 1979;13:217–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Matykina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Matykina, E., Skeldon, P. et al. Calcium and titanium release in simulated body fluid from plasma electrolytically oxidized titanium. J Mater Sci: Mater Med 21, 81–88 (2010). https://doi.org/10.1007/s10856-009-3850-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3850-x

Keywords

Navigation