Journal of Materials Science: Materials in Medicine

, Volume 20, Issue 11, pp 2181–2187 | Cite as

Hyaline cartilage surface study with an environmental scanning electron microscope. An experimental study

  • S. Sastre
  • S. Suso
  • J. M. Segur
  • G. Bori
  • J. A. Carbonell
  • E. Agustí
  • M. Nuñez


To obtain images of the articular surface of fresh osteochondral grafts using an environmental scanning electron microscope (ESEM). To evaluate and compare the main morphological aspects of the chondral surface of the fresh grafts. To develop a validated classification system on the basis of the images obtained via the ESEM. The study was based on osteochondral fragments from the internal condyle of the knee joint of New Zealand rabbits, corresponding to fresh chondral surface. One hundred images were obtained via the ESEM and these were classified by two observers according to a category system. The Kappa index and the corresponding confidence interval (CI) were calculated. Of the samples analysed, 62–72% had an even surface. Among the samples with an uneven surface 17–22% had a hillocky appearance and 12–16% a knobbly appearance. As regards splits, these were not observed in 92–95% of the surfaces; 4–7% showed superficial splits and only 1% deep splits. In 78–82% of cases no lacunae in the surface were observed, while 17–20% showed filled lacunae and only 1–2% presented empty lacunae. The study demonstrates that the ESEM is useful for obtaining and classifying images of osteochondral grafts.


Articular Surface Environmental Scanning Electron Microscope Zealand Rabbit Cartilaginous Tissue Osteochondral Graft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thanks the graft from Transplant Service Foundation that has allowed performing this work.

Conflict of interest statement

All authors disclose any financial and personal relationships with other people or organisations that could inappropriately influence (bias) our work. Including employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding.


  1. 1.
    Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31, 516 knee arthroscopies. Arthroscopy. 1997;13:456–60. doi: 10.1016/S0749-8063(97)90124-9.PubMedGoogle Scholar
  2. 2.
    Arakawa T, Carpenter J, Kita Y, Crowe J. The basis for toxicity of certain cryoprotectants. Cryobiology. 1990;27:401–15. doi: 10.1016/0011-2240(90)90017-X.CrossRefGoogle Scholar
  3. 3.
    Gillogly SD, Voight M, Blackburn T. Treatment of articular cartilage defects of the knee with autologous chondrocyte implantation. J Orthop Sports Phys Ther. 1998;28:241–51.PubMedGoogle Scholar
  4. 4.
    LaPrade RF, Botker JC. Donor-site morbidity after osteochondral autograft transfer procedures. Arthroscopy. 2004;20:e69–73.PubMedGoogle Scholar
  5. 5.
    Minas T. Chondrocyte implantation in the repair of chondral lesions of the knee: economics and quality of life. Am J Orthop. 1998;27:739–44.PubMedGoogle Scholar
  6. 6.
    Coutts RD, Healey RM, Ostrander R, Sah RL, Goomer R, Amiel D. Matrices for cartilage repair. Clin Orthop Relat Res. 2001;391(Suppl):S271–9. doi: 10.1097/00003086-200110001-00025.CrossRefPubMedGoogle Scholar
  7. 7.
    Diduch DR, Jordan LC, Mierisch CM, Balian G. Marrow stromal cells embedded in alginate for repair of osteochondral defects. Arthroscopy. 2000;16:571–7. doi: 10.1053/jars.2000.4827.PubMedCrossRefGoogle Scholar
  8. 8.
    Sastre S, Suso S, Segur JM, et al. Cryopreserved and frozen hyaline cartilage study with an environmental scanning electron microscope. An experimental and prospective study. J Rheuma [Epub Ahead, accepted March 2008].Google Scholar
  9. 9.
    Sastre S. Estudi amb microscopi electrònic de rastreig ambiental de la morfologia de la superfície articular d’empelts osteocondrals. Valoració de dos mètodes de criopreservació. Tesis Doctoral Universidad de Barcelona 2006, Thesis. 2008.Google Scholar
  10. 10.
    Weakley BS. A Beginner’s handbook in biological transmission Electron Microscopy. 2nd ed. New York.: Churchill Livingstone; 1981. p. 49.Google Scholar
  11. 11.
    Soeder S, Kuhlmann A, Aigner T. Analysis of protein distribution in cartilage using immunofluorescence and laser confocal scanning microscopy. Methods Mol Med. 2004;101:107–25.PubMedGoogle Scholar
  12. 12.
    Kubo T, Arai Y, Namie K, Takahashi K, Hojo T, Inoue S, et al. Time-sequential changes in biomechanical and morphological properties of articular cartilage in cryopreserved osteochondral allografting. J Orthop Sci. 2001;6:276–81. doi: 10.1007/s007760100047.CrossRefPubMedGoogle Scholar
  13. 13.
    Paulsen HU, Thomsen JS, Hougen HP, Mosekilde L. A histomorphometric and scanning electron microscopy study of human condylar cartilage and bone tissue changes in relation to age. Clin Orthod Res. 1999;2:67–78.PubMedGoogle Scholar
  14. 14.
    Clark JM, Simonian PT. Scanning electron microscopy of “fibrillated” and “malacic” human articular cartilage: technical considerations. Microsc Res Tech. 1997;37:299–313. doi: 10.1002/(SICI)1097-0029(19970515)37:4<299::AID-JEMT5>3.0.CO;2-G.CrossRefPubMedGoogle Scholar
  15. 15.
    Li B, Marshall D, Roe M, Aspden RM. The electron microscope appearance of the subchondral bone plate in the human femoral head in osteoarthritis and osteoporosis. J Anat. 1999;195(Pt 1):101–10. doi: 10.1046/j.1469-7580.1999.19510101.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Goodwin DW, Zhu H, Dunn JF. In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy. AJR Am J Roentgenol. 2000;174:405–9.PubMedGoogle Scholar
  17. 17.
    Stein H, Levanon D. Articular cartilage of the rabbit knee after synovectomy: a scanning electron microscopy study. J Anat. 1998;192(Pt 3):343–9. doi: 10.1046/j.1469-7580.1998.19230343.x.CrossRefPubMedGoogle Scholar
  18. 18.
    Suso S, Carbonell JA, Segur JM, Manero J, Planell JA. Cartilage appearance using an environmental scanning electron microscope. Cell Preserv Technol. 2004;2:51–4. doi: 10.1089/153834404322708754.CrossRefGoogle Scholar
  19. 19.
    Cameron RE, Donald AM. Minimizing sample evaporation in the environmental scanning electron-microscope. J Microscopy-oxford. 1994;193(Part 3):227–37.Google Scholar
  20. 20.
    Moncrieff DA, Robinson VNE, et al. Charge neutralisation of insulating surfaces in the SEM by gas ionisation. J Phys D Appl Phys. 1978;11:2315–25. doi: 10.1088/0022-3727/11/17/002.CrossRefADSGoogle Scholar
  21. 21.
    Danilatos GD. Introduction to the ESEM instrument. Microsc Res Tech. 1993;25:354–61. doi: 10.1002/jemt.1070250503.CrossRefPubMedGoogle Scholar
  22. 22.
    Manero JM, Gil FJ, Padros E, Planell JA. Applications of environmental scanning electron microscopy (ESEM) in biomaterials field. Microsc Res Tech. 2003;61:469–80. doi: 10.1002/jemt.10358.CrossRefPubMedGoogle Scholar
  23. 23.
    Bailey. Statistical methods in biology. 2nd ed. London: Hodder and Stoughton; 1981. p. 56–89.MATHGoogle Scholar
  24. 24.
    Williams MA. Quantitative methods in biology. In: Practical methods in electron microscopy, Vol 6, Part II. New York: Elsevier; 1977. p. 15–34.Google Scholar
  25. 25.
    Jakstys B. Artifacts in sampling specimens for biological electron microscopy. In: Artifacts in biological electron microscopy. New York: Plenum Press; 1988. p. 12–45.Google Scholar
  26. 26.
    Carbonell JA. Estudio de la morfología de la superficie articular de injertos osteocondrales frescos, congelados y criopreservados empleando un Microscopio Electrónico de Barrido Ambiental. Tesis Doctoral Universidad de Barcelona 2002, Thesis. 2004.Google Scholar
  27. 27.
    Hong SP, Henderson CN. Articular cartilage surface changes following immobilization of the rat knee joint. A semiquantitative scanning electron-microscopic study. Acta Anat (Basel). 1996;157:27–40. doi: 10.1159/000147864.CrossRefGoogle Scholar
  28. 28.
    Jurvelin J, Kuusela T, Heikkila R, Pelttari A, Kiviranta I, Tammi M, et al. Investigation of articular cartilage surface morphology with a semiquantitative scanning electron microscopic method. Acta Anat (Basel). 1983;116:302–11. doi: 10.1159/000145755.CrossRefGoogle Scholar
  29. 29.
    O’Connor P, Oates K, Gardner DL, Middleton JF, Orford CR, Brereton JD. Low temperature and conventional scanning electron microscopic observations of dog femoral condylar cartilage surface after anterior cruciate ligament division. Ann Rheum Dis. 1985;44:321–7. doi: 10.1136/ard.44.5.321.CrossRefPubMedGoogle Scholar
  30. 30.
    Gardner DL, McGillivray DC. Surface structure of articular cartilage. Historical review. Ann Rheum Dis. 1971;30:10–4. doi: 10.1136/ard.30.1.10.CrossRefPubMedGoogle Scholar
  31. 31.
    Gardner DL. The influence of microscopic technology on knowledge of cartilage surface structure. Ann Rheum Dis. 1972;31:235–58. doi: 10.1136/ard.31.4.235.CrossRefPubMedGoogle Scholar
  32. 32.
    Bloebaum RD, Wilson AS. The morphology of the surface of artcular cartilage in adult rats. J Anat. 1980;131:333–46.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. Sastre
    • 1
  • S. Suso
    • 1
  • J. M. Segur
    • 1
  • G. Bori
    • 1
  • J. A. Carbonell
    • 1
  • E. Agustí
    • 1
  • M. Nuñez
    • 1
  1. 1.Orthopaedic Department of Hospital ClínicBarcelonaSpain

Personalised recommendations