Cartilage replacement by use of hybrid systems of autologous cells and polyethylene: an experimental study

  • Ilona Schoen
  • Torsten Rahne
  • Annekatrin Markwart
  • Kerstin Neumann
  • Alexander Berghaus
  • Ernst Roepke


This study used porous polyethylene (PE) as a scaffold in an animal model system. The surface of the scaffolds was either modified with collagen II coating or first functionalized by oxygen plasma treatment and then coated with collagen II. The specimens were inoculated with autologous chondrocytes and transplanted into the concha of guinea pigs. Bare scaffolds were used as controls. Periods of 1, 6, and 12 months after implantation, samples of cells containing specimens and control samples were evaluated microscopically. As a result, the pre-seeded specimens were better integrated into the surrounding tissue than cell-free PE-specimens. Also a weaker immune reaction and an improved cartilage generation could be detected in the pre-seeded specimen. Compared to the other surface modifications, no further improvement of cartilage development was observed in the long term in vivo animal experimental study.


Surface Modification Oxygen Plasma Cell Seeding Collagen Coating Autologous Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Dr. Jürgen Vogel from the Department of Bioengineering of the MLU Halle-Wittenberg for performing the surface modification of the PE materials. This project has been funded by ministry of education of Sachsen-Anhalt Grant No. 3308A/0080B.


  1. 1.
    Lin Z, Willers C, Xu J, Zheng MH. The chondrocyte: biology and clinical application. Tissue Eng. 2006;12:1971–4. doi: 10.1089/ten.2006.12.1971.PubMedCrossRefGoogle Scholar
  2. 2.
    Praveen J, Patel MA, Rees HC, Olver JM. Fibrovascularization of porous polyethylene orbital floor implants in humans. Arch Ophthalmol. 2003;121:400–3.Google Scholar
  3. 3.
    Romo TIII, Sclafani A, Sabini P. Use of porous high-density polyethylene in revision rhinoplasty and in the platyrrhine nose. Aesthetic Plast Surg. 1998;22:211–21. doi: 10.1007/s002669900193.PubMedCrossRefGoogle Scholar
  4. 4.
    Romo TIII, Sonne J, Choe KS, Sclafani A. Revision rhinoplasty. Facial Plast Surg. 2003;19:299–307. doi: 10.1055/s-2004-815649.PubMedCrossRefGoogle Scholar
  5. 5.
    Nam SB, Bae YC, Kang YS. Analysis of the postoperative outcome in 405 cases of orbital fracture using two synthetic implants. Ann Plast Surg. 2006;56:263–7. doi: 10.1097/ Scholar
  6. 6.
    Cui HG, Li HY, Chen YH. Analysis of high density porous polyethylene (Medpor) orbital implant in 266 cases. Zhonghua Zheng Xing Wai Ke Za Zhi. 2006;22:133–5.PubMedGoogle Scholar
  7. 7.
    Carboni A, Cerulli G, Perugini M, Renzi G. Long-term-follow-up of 105 porous polyethylene implants used to correct facial deformity. Eur J Plast Surg. 2002;25:310–4. doi: 10.1007/s00238-002-0407-3.CrossRefGoogle Scholar
  8. 8.
    Berghaus A. Implantate für die rekonstruktive Chirurgie der Nase und des Ohres. Laryngorhinootologie. 2007;86:S67–76. doi: 10.1055/s-2007-966301.CrossRefGoogle Scholar
  9. 9.
    Blaydon SM, Shepler TR, Neuhaus RW, White WL, Shore JW. The porous polyethylene (Medpor) sperical orbital implant: a retrospective study of 136 cases. Ophthal Plast Reconstr Surg. 2003;19:364–71. doi: 10.1097/01.IOP.0000083643.36461.84.PubMedCrossRefGoogle Scholar
  10. 10.
    Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353–4. doi: 10.1016/S0142-9612(03)00339-9.PubMedCrossRefGoogle Scholar
  11. 11.
    Isogai N, Kusuhara H, Ikada Y, Ohtani H, Jacquet R, Hillyer J, et al. Comparison of different chondrocytes for use in tissue engineering of cartilage structures. Tissue Eng. 2006;12:691–3. doi: 10.1089/ten.2006.12.691.PubMedCrossRefGoogle Scholar
  12. 12.
    Perka C, Schultz O, Sittinger M, Zippel H. Chondrozytentransplantation in PGLA/Polydioxanon-Vliesen. Orthopade. 2000;29:112–9.PubMedGoogle Scholar
  13. 13.
    Cao Y, Vacanti MP, Paiqe KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg. 1997;100:297–302. doi: 10.1097/00006534-199708000-00001.PubMedCrossRefGoogle Scholar
  14. 14.
    Aigner J, Tegeler J, Hutzler P, Campoccia D, Pavesio A, Hammer C, et al. Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res. 1998;42:172–81. doi: 10.1002/(SICI)1097-4636(199811)42:2<172::AID-JBM2>3.0.CO;2-M.PubMedCrossRefGoogle Scholar
  15. 15.
    Lee CR, Grodzinsky, Hsu H-P, Spector M. Effects of a cultured autologous chondrocytes-seeded type II collagen scaffold on the healing of a chondral defect in a canine model. J Orthop Res. 2003;21:272–81. doi: 10.1016/S0736-0266(02)00153-5.PubMedCrossRefGoogle Scholar
  16. 16.
    Nehrer S, Breinan HA, Ramappa A, Young G, Shortkroff S, Louie LK, et al. Matrix collagen type and pore size influence behavior of seeded canine Chondrozytes. Biomaterials. 1997;18:769–76. doi: 10.1016/S0142-9612(97)00001-X.PubMedCrossRefGoogle Scholar
  17. 17.
    Angele P, Abke J, Kujat R, Faltermeier H, Schumann D, Nerlich M, et al. Influence of different collagen species on physico chemical properties of crosslinked collagen matrices. Biomaterials. 2004;25:2831–41. doi: 10.1016/j.biomaterials.2003.09.066.PubMedCrossRefGoogle Scholar
  18. 18.
    Rotter N, Haisch A, Bücheler M. Cartilage and bone tissue engineering for reconstructive head and neck surgery. Eur Arch Otorhinolaryngol. 2005;262:539–45. doi: 10.1007/s00405-004-0866-1.PubMedCrossRefGoogle Scholar
  19. 19.
    Bryant SJ, Durand KL, Anseth KS. Manipulations in hydrogel chemistry control photoencapsulated chondrocytes behavior and their extracellular matrix production. J Biomed Mater Res. 2003;67A:1430–6. doi: 10.1002/jbm.a.20003.CrossRefGoogle Scholar
  20. 20.
    Baek CH, Ko YJ. Characteristics of tissue-engineered cartilage on macroporous biodegradedable PLGA scoffold. Laryngoscope. 2006;116:1829–34. doi: 10.1097/01.mlg.0000233521.49393.0d.PubMedCrossRefGoogle Scholar
  21. 21.
    Röpke E, Schön I, Vogel J, Jamali J, Bloching M, Berghaus A. Screening of modified polyethylene surfaces for tissue engineering of chondrocytes. Laryngo-Rhino-Otol. 2007;86:37–43. doi: 10.1055/s-2006-945025.CrossRefGoogle Scholar
  22. 22.
    Vats A, Tolley NS, Polak JM, Gough JE. Scaffold and Biomaterials for tissue engineering: a review of clincal applications. Clin Otolaryngol. 2003;28:165–72. doi: 10.1046/j.1365-2273.2003.00686.x.PubMedCrossRefGoogle Scholar
  23. 23.
    Cancedda R, Dozin B, Giannoni P, Quarto R. Tissue engineering and cell therapy of cartilage and bone. Matrix Biol. 2003;22:81–91. doi: 10.1016/S0945-053X(03)00012-X.PubMedCrossRefGoogle Scholar
  24. 24.
    Rickert D, Lendlein A, Peters I, Moses MA, Franke RP. Biocompatibility testing of novel multifunctional polymeric biomaterials for tissue engineering applications in head and neck surgery: an overview. Eur Arch Otorhinolaryngol. 2006;263:215–22. doi: 10.1007/s00405-005-0950-1.PubMedCrossRefGoogle Scholar
  25. 25.
    Dayss E, Leps G, Meinhardt J, Wutzler A. Biokompatible Polymerschichten. In: Leps G, Kausche H, editors. 40 Jahre Werkstofftechnik. Merseburg; 1999, p. 84.Google Scholar
  26. 26.
    Harlow E, Lane D. Antibodies: a laboratory manual. New York: Cold Spring Harbour laboratory; 1988.Google Scholar
  27. 27.
    Freshney RI. Culture of animal cells. A manual of basic technique. 2nd ed. Berlin, New York: de Gruyter; 1990.Google Scholar
  28. 28.
    Romeis B. Mikroskopische Technik. 17th ed. München: Urban und Schwarzenberg; 1989.Google Scholar
  29. 29.
    Custers RJ, Creemers LB, Verbout AJ, van Rijen MH, Dhert WJ, Saris DB. Reliabaility, reproducibility and variability of the traditional Histologic/Histochemical Grading System vs the new OARSI Osteoarthritis Cartilage Histopathology Assessment System. Osteoarthritis Cartilage. 2007;15:1241–8. doi: 10.1016/j.joca.2007.04.017.PubMedCrossRefGoogle Scholar
  30. 30.
    Petersen JP, Ueblackker P, Goepfert C, Adamietz P, Baumbach K, Stork A, et al. Long term results after implantation of tissue engineered cartilage for the treatment of osteochondral lesions in a minipig model. J Mater Sci: Mater Med. 2008;19:2029–38. doi: 10.1007/s10856-007-3291-3.CrossRefGoogle Scholar
  31. 31.
    Kusuhara H, Isogai N, Enjo M, Otani H, Ikada Y, Jacquet R, et al. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Rep Reg. 2009;17:136–46.CrossRefGoogle Scholar
  32. 32.
    Cenzi R, Farina A, Zuccarino L, Carinci F. Clinical Note Clinical outcome of 285 Medpor grafts used for craniofacial reconstruction. J Craniofac Surg. 2005;16:526–33. doi: 10.1097/01.scs.0000168761.46700.dc.PubMedCrossRefGoogle Scholar
  33. 33.
    Hilborn J, Bjursten LM. A new and evolving paradigm for biocompatibility. J Tissue Eng Regen Med. 2007;1:110–9. doi: 10.1002/term.4.PubMedCrossRefGoogle Scholar
  34. 34.
    Tigli RS, Gümüsdereioglu M. Evaluation of alginate-chitosan semi IPNs as cartilage scaffolds. J Mater Sci: Mater Med. 2009;20:699–709. doi: 10.1007/s10856-008-3624-x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ilona Schoen
    • 1
  • Torsten Rahne
    • 1
  • Annekatrin Markwart
    • 1
  • Kerstin Neumann
    • 1
  • Alexander Berghaus
    • 2
  • Ernst Roepke
    • 1
  1. 1.Department of Otorhinolaryngology, Head and Neck SurgeryUniversity Hospital MLU Halle-WittenbergHalleGermany
  2. 2.Department of Otorhinolaryngology, Head and Neck SurgeryUniversity of Munich (LMU)MunichGermany

Personalised recommendations