In vitro biocompatibility of chitosan-based materials to primary culture of hippocampal neurons



The natural biomaterial chitosan has been widely used as a promising nerve guidance conduit material for peripheral nerve repair. This study aimed to investigate in vitro biocompatibility of chitosan to primarily cultured hippocampal neurons, one type of central nervous system (CNS) cells. The substrate made up of chitosan fibers or membranes was found to support the survival and growth of the attached hippocampal neurons by using light and electron microscopy as well as immunocytochemistry for neurofilament 200, growth-associated protein-43, microtubule-associated protein 2, β-tubulin III and synaptophysin. MTT assay indicated that the cell viability of hippocampal neurons in chitosan fiber or membrane extract was not significantly different from that in hydroxyapatite extract or plain neuronal medium, but significantly higher than that in organotin extract after culture for different times. Western analysis revealed that no significant difference in the protein level of growth-associated protein-43 and β-tubulin III was detected between hippocampal neurons cultured in chitosan extract and in plain neuronal culture medium. The results collectively demonstrate that chitosan is biocompatible to primary culture of hippocampal neurons without cytotoxic effects on cell phenotype and functions, raising a potential possibility of using chitosan for CNS therapy.


Chitosan Hippocampal Neuron Membrane Extract Coagulation Bath Central Nervous System Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by Hi-Tech Research and Development Program of China (863 Program, Grant No. 2006AA02A128), National Natural Science Foundation of China (Grant No. 30670667 and 30870811). We wish to thank Professor Jie Liu for assistance in manuscript preparation.


  1. 1.
    J.B. Recknor, D.S. Sakaguchi, S.K. Mallapragada, Biomaterials 27, 4098 (2006). doi: 10.1016/j.biomaterials.2006.03.029 PubMedCrossRefGoogle Scholar
  2. 2.
    P. Prang, R. Müller, A. Eljaouhari, K. Heckmann, W. Kunz, T. Weber et al., Biomaterials 27, 3560 (2006)PubMedGoogle Scholar
  3. 3.
    N. Popovic, P.N. Brundin, Int. J. Pharm. 314, 120 (2006). doi: 10.1016/j.ijpharm.2005.09.040 PubMedCrossRefGoogle Scholar
  4. 4.
    K.E. Cromptona, J.D. Goud, R.V. Bellamkonda, T.R. Gengenbach, D.I. Finkelstein, M.K. Horne et al., Biomaterials 28, 441 (2007). doi: 10.1016/j.biomaterials.2006.08.044 CrossRefGoogle Scholar
  5. 5.
    Y. Hu, X. Jiang, Y. Ding, H. Ge, Y. Yuan, C. Yang, Biomaterials 23, 3193 (2002). doi: 10.1016/S0142-9612(02)00071-6 PubMedCrossRefGoogle Scholar
  6. 6.
    T.W. Chung, J. Yang, T. Akaike, K.Y. Cho, J.W. Nah, S.I. Kim, C.S. Cho, Biomaterials 23, 2827 (2002). doi: 10.1016/S0142-9612(01)00399-4 PubMedCrossRefGoogle Scholar
  7. 7.
    A. Zhu, S. Wang, Y. Yuan, J. Shen, J. Biomater. Sci. Polym. Ed. 13, 501 (2002). doi: 10.1163/15685620260178364 PubMedCrossRefGoogle Scholar
  8. 8.
    M. Zhang, X. Li, Y. Gong, N. Zhao, X. Zhang, Biomaterials 23, 2641 (2002). doi: 10.1016/S0142-9612(01)00403-3 PubMedCrossRefGoogle Scholar
  9. 9.
    M. Gingras, I. Paradis, F. Berthod, Biomaterials 24, 1653 (2003). doi: 10.1016/S0142-9612(02)00572-0 PubMedCrossRefGoogle Scholar
  10. 10.
    M.Y. Cheng, K. Gong, J.M. Li, Y.D. Gong, N.M. Zhao, X.F. Zhang, J. Biomater. Appl. 19, 59 (2004). doi: 10.1177/0885328204043450 CrossRefGoogle Scholar
  11. 11.
    H. Gong, Y. Zhong, J. Li, Y. Gong, N. Zhao, X. Zhang, J. Biomed. Mater. Res. 52, 285 (2000). doi: 10.1002/1097-4636(200011)52:2<285::AID-JBM7>3.0.CO;2-G CrossRefGoogle Scholar
  12. 12.
    Z. Shen, A. Berger, R. Hierner, C. Allmeling, E. Ungewickell, G.F. Walter, Microsurgery 21, 6 (2001). doi: 10.1002/1098-2752(2001)21:1<6::AID-MICR1001>3.0.CO;2-6 PubMedCrossRefGoogle Scholar
  13. 13.
    M. Cheng, W. Cao, Y. Gao, Y. Gong, N. Zhao, X. Zhang, J. Biomater. Sci. Polym. Ed. 14, 1155 (2003). doi: 10.1163/156856203769231628 PubMedCrossRefGoogle Scholar
  14. 14.
    S. Itoh, M. Suzuki, I. Yamaguchi, K. Takakuda, H. Kobayashi, K. Shinomiya et al., Artif. Organs 27, 1079 (2003). doi: 10.1111/j.1525-1594.2003.07208.x PubMedCrossRefGoogle Scholar
  15. 15.
    Y.M. Lee, Y.J. Park, S.J. Lee, Y. Ku, S.B. Han, S.M. Choi et al., J. Periodontol. 71, 410 (2000). doi: 10.1902/jop.2000.71.3.410 PubMedCrossRefGoogle Scholar
  16. 16.
    Y. Wan, A.X. Yu, H. Wu, Z.X. Wang, D.J. Wen, J. Mater. Sci.: Mater. Med. 16, 1017 (2005). doi: 10.1007/s10856-005-4756-x CrossRefGoogle Scholar
  17. 17.
    Y. Yuan, P. Zhang, Y. Yang, X. Wang, X. Gu, Biomaterials 25, 4273 (2004). doi: 10.1016/j.biomaterials.2003.11.029 PubMedCrossRefGoogle Scholar
  18. 18.
    X. Wang, W. Hu, Y. Cao, J. Yao, J. Wu, X. Gu, Brain 128, 1897 (2005). doi: 10.1093/brain/awh517 PubMedCrossRefGoogle Scholar
  19. 19.
    F. Rigato, in BioValley Monographs, ed. by P. Poindron, P. Piguet, E. Förster (Karger, Basel, 2005), p. 82Google Scholar
  20. 20.
    Y.M. Yang, W. Hu, X.D. Wang, X.S. Gu, J. Mater. Sci.: Mater. Med. 18, 2117 (2007). doi: 10.1007/s10856-007-3013-x CrossRefGoogle Scholar
  21. 21.
    S.H. Lee, S.Y. Park, J.H. Choi, J. Appl. Polym. Sci. 92, 2054 (2004). doi: 10.1002/app.20160 CrossRefGoogle Scholar
  22. 22.
    S. Shi, L. Jan, Y. Jan, Cell 112, 63 (2003). doi: 10.1016/S0092-8674(02)01249-7 PubMedCrossRefGoogle Scholar
  23. 23.
    H. Jiang, W. Guo, X. Liang, Y. Rao, Cell 120, 123 (2005)PubMedGoogle Scholar
  24. 24.
    K. Goslin, D.J. Schreyer, J.H.P. Skene, G. Banker, Nature 336, 672 (1988). doi: 10.1038/336672a0 PubMedCrossRefADSGoogle Scholar
  25. 25.
    L.I. Benowitz, A. Routtenberg, Trends Neurosci. 20, 84 (1997). doi: 10.1016/S0166-2236(96)10072-2 PubMedCrossRefGoogle Scholar
  26. 26.
    B. Chakravarthy, A. Rashida, L. Browna, L. Tessiera, J. Kellya, M. Ménard, Biochem. Biophys. Res. Commun. 371, 679 (2008). doi: 10.1016/j.bbrc.2008.04.119 PubMedCrossRefGoogle Scholar
  27. 27.
    B. Shafit-Zagardo, N. Kalcheva, Mol. Neurobiol. 16, 149 (1998). doi: 10.1007/BF02740642 PubMedCrossRefGoogle Scholar
  28. 28.
    M. Carré, N. André, G. Carles, H. Borghi, L. Brichese, C. Briand, D. Braguer, J. Biol. Chem. 277, 33664 (2002). doi: 10.1074/jbc.M203834200 PubMedCrossRefGoogle Scholar
  29. 29.
    R. Jahn, W. Schieble, C. Ouimet, P. Greengard, Proc. Natl Acad. Sci. USA 82, 4137 (1985). doi: 10.1073/pnas.82.12.4137 PubMedCrossRefADSGoogle Scholar
  30. 30.
    B. Wiedenmann, W.W. Franke, Cell 41, 1017 (1985). doi: 10.1016/S0092-8674(85)80082-9 PubMedCrossRefGoogle Scholar
  31. 31.
    F. Navone, R. Jahn, G.D. Gioia, H. Stukenbrok, P. Greengard, P.D. Camilli, J. Cell Biol. 103, 2511 (1986). doi: 10.1083/jcb.103.6.2511 PubMedCrossRefGoogle Scholar
  32. 32.
    G. Thiel, Brain Pathol. 3, 87 (1993). doi: 10.1111/j.1750-3639.1993.tb00729.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory of NeuroregenerationNantong UniversityNantongPeople’s Republic of China

Personalised recommendations