Skip to main content
Log in

In vitro biocompatibility of chitosan-based materials to primary culture of hippocampal neurons

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The natural biomaterial chitosan has been widely used as a promising nerve guidance conduit material for peripheral nerve repair. This study aimed to investigate in vitro biocompatibility of chitosan to primarily cultured hippocampal neurons, one type of central nervous system (CNS) cells. The substrate made up of chitosan fibers or membranes was found to support the survival and growth of the attached hippocampal neurons by using light and electron microscopy as well as immunocytochemistry for neurofilament 200, growth-associated protein-43, microtubule-associated protein 2, β-tubulin III and synaptophysin. MTT assay indicated that the cell viability of hippocampal neurons in chitosan fiber or membrane extract was not significantly different from that in hydroxyapatite extract or plain neuronal medium, but significantly higher than that in organotin extract after culture for different times. Western analysis revealed that no significant difference in the protein level of growth-associated protein-43 and β-tubulin III was detected between hippocampal neurons cultured in chitosan extract and in plain neuronal culture medium. The results collectively demonstrate that chitosan is biocompatible to primary culture of hippocampal neurons without cytotoxic effects on cell phenotype and functions, raising a potential possibility of using chitosan for CNS therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.B. Recknor, D.S. Sakaguchi, S.K. Mallapragada, Biomaterials 27, 4098 (2006). doi:10.1016/j.biomaterials.2006.03.029

    Article  PubMed  CAS  Google Scholar 

  2. P. Prang, R. Müller, A. Eljaouhari, K. Heckmann, W. Kunz, T. Weber et al., Biomaterials 27, 3560 (2006)

    PubMed  CAS  Google Scholar 

  3. N. Popovic, P.N. Brundin, Int. J. Pharm. 314, 120 (2006). doi:10.1016/j.ijpharm.2005.09.040

    Article  PubMed  CAS  Google Scholar 

  4. K.E. Cromptona, J.D. Goud, R.V. Bellamkonda, T.R. Gengenbach, D.I. Finkelstein, M.K. Horne et al., Biomaterials 28, 441 (2007). doi:10.1016/j.biomaterials.2006.08.044

    Article  Google Scholar 

  5. Y. Hu, X. Jiang, Y. Ding, H. Ge, Y. Yuan, C. Yang, Biomaterials 23, 3193 (2002). doi:10.1016/S0142-9612(02)00071-6

    Article  PubMed  CAS  Google Scholar 

  6. T.W. Chung, J. Yang, T. Akaike, K.Y. Cho, J.W. Nah, S.I. Kim, C.S. Cho, Biomaterials 23, 2827 (2002). doi:10.1016/S0142-9612(01)00399-4

    Article  PubMed  CAS  Google Scholar 

  7. A. Zhu, S. Wang, Y. Yuan, J. Shen, J. Biomater. Sci. Polym. Ed. 13, 501 (2002). doi:10.1163/15685620260178364

    Article  PubMed  CAS  Google Scholar 

  8. M. Zhang, X. Li, Y. Gong, N. Zhao, X. Zhang, Biomaterials 23, 2641 (2002). doi:10.1016/S0142-9612(01)00403-3

    Article  PubMed  CAS  Google Scholar 

  9. M. Gingras, I. Paradis, F. Berthod, Biomaterials 24, 1653 (2003). doi:10.1016/S0142-9612(02)00572-0

    Article  PubMed  CAS  Google Scholar 

  10. M.Y. Cheng, K. Gong, J.M. Li, Y.D. Gong, N.M. Zhao, X.F. Zhang, J. Biomater. Appl. 19, 59 (2004). doi:10.1177/0885328204043450

    Article  CAS  Google Scholar 

  11. H. Gong, Y. Zhong, J. Li, Y. Gong, N. Zhao, X. Zhang, J. Biomed. Mater. Res. 52, 285 (2000). doi:10.1002/1097-4636(200011)52:2<285::AID-JBM7>3.0.CO;2-G

    Article  CAS  Google Scholar 

  12. Z. Shen, A. Berger, R. Hierner, C. Allmeling, E. Ungewickell, G.F. Walter, Microsurgery 21, 6 (2001). doi:10.1002/1098-2752(2001)21:1<6::AID-MICR1001>3.0.CO;2-6

    Article  PubMed  CAS  Google Scholar 

  13. M. Cheng, W. Cao, Y. Gao, Y. Gong, N. Zhao, X. Zhang, J. Biomater. Sci. Polym. Ed. 14, 1155 (2003). doi:10.1163/156856203769231628

    Article  PubMed  CAS  Google Scholar 

  14. S. Itoh, M. Suzuki, I. Yamaguchi, K. Takakuda, H. Kobayashi, K. Shinomiya et al., Artif. Organs 27, 1079 (2003). doi:10.1111/j.1525-1594.2003.07208.x

    Article  PubMed  Google Scholar 

  15. Y.M. Lee, Y.J. Park, S.J. Lee, Y. Ku, S.B. Han, S.M. Choi et al., J. Periodontol. 71, 410 (2000). doi:10.1902/jop.2000.71.3.410

    Article  PubMed  CAS  Google Scholar 

  16. Y. Wan, A.X. Yu, H. Wu, Z.X. Wang, D.J. Wen, J. Mater. Sci.: Mater. Med. 16, 1017 (2005). doi:10.1007/s10856-005-4756-x

    Article  CAS  Google Scholar 

  17. Y. Yuan, P. Zhang, Y. Yang, X. Wang, X. Gu, Biomaterials 25, 4273 (2004). doi:10.1016/j.biomaterials.2003.11.029

    Article  PubMed  CAS  Google Scholar 

  18. X. Wang, W. Hu, Y. Cao, J. Yao, J. Wu, X. Gu, Brain 128, 1897 (2005). doi:10.1093/brain/awh517

    Article  PubMed  Google Scholar 

  19. F. Rigato, in BioValley Monographs, ed. by P. Poindron, P. Piguet, E. Förster (Karger, Basel, 2005), p. 82

  20. Y.M. Yang, W. Hu, X.D. Wang, X.S. Gu, J. Mater. Sci.: Mater. Med. 18, 2117 (2007). doi:10.1007/s10856-007-3013-x

    Article  CAS  Google Scholar 

  21. S.H. Lee, S.Y. Park, J.H. Choi, J. Appl. Polym. Sci. 92, 2054 (2004). doi:10.1002/app.20160

    Article  CAS  Google Scholar 

  22. S. Shi, L. Jan, Y. Jan, Cell 112, 63 (2003). doi:10.1016/S0092-8674(02)01249-7

    Article  PubMed  CAS  Google Scholar 

  23. H. Jiang, W. Guo, X. Liang, Y. Rao, Cell 120, 123 (2005)

    PubMed  CAS  Google Scholar 

  24. K. Goslin, D.J. Schreyer, J.H.P. Skene, G. Banker, Nature 336, 672 (1988). doi:10.1038/336672a0

    Article  PubMed  ADS  CAS  Google Scholar 

  25. L.I. Benowitz, A. Routtenberg, Trends Neurosci. 20, 84 (1997). doi:10.1016/S0166-2236(96)10072-2

    Article  PubMed  CAS  Google Scholar 

  26. B. Chakravarthy, A. Rashida, L. Browna, L. Tessiera, J. Kellya, M. Ménard, Biochem. Biophys. Res. Commun. 371, 679 (2008). doi:10.1016/j.bbrc.2008.04.119

    Article  PubMed  CAS  Google Scholar 

  27. B. Shafit-Zagardo, N. Kalcheva, Mol. Neurobiol. 16, 149 (1998). doi:10.1007/BF02740642

    Article  PubMed  CAS  Google Scholar 

  28. M. Carré, N. André, G. Carles, H. Borghi, L. Brichese, C. Briand, D. Braguer, J. Biol. Chem. 277, 33664 (2002). doi:10.1074/jbc.M203834200

    Article  PubMed  Google Scholar 

  29. R. Jahn, W. Schieble, C. Ouimet, P. Greengard, Proc. Natl Acad. Sci. USA 82, 4137 (1985). doi:10.1073/pnas.82.12.4137

    Article  PubMed  ADS  CAS  Google Scholar 

  30. B. Wiedenmann, W.W. Franke, Cell 41, 1017 (1985). doi:10.1016/S0092-8674(85)80082-9

    Article  PubMed  CAS  Google Scholar 

  31. F. Navone, R. Jahn, G.D. Gioia, H. Stukenbrok, P. Greengard, P.D. Camilli, J. Cell Biol. 103, 2511 (1986). doi:10.1083/jcb.103.6.2511

    Article  PubMed  CAS  Google Scholar 

  32. G. Thiel, Brain Pathol. 3, 87 (1993). doi:10.1111/j.1750-3639.1993.tb00729.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Hi-Tech Research and Development Program of China (863 Program, Grant No. 2006AA02A128), National Natural Science Foundation of China (Grant No. 30670667 and 30870811). We wish to thank Professor Jie Liu for assistance in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Q., Zhang, T., Yang, Y. et al. In vitro biocompatibility of chitosan-based materials to primary culture of hippocampal neurons. J Mater Sci: Mater Med 20, 1457–1466 (2009). https://doi.org/10.1007/s10856-009-3702-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3702-8

Keywords

Navigation