Designer self-assembling peptide scaffold stimulates pre-osteoblast attachment, spreading and proliferation

  • Feng Zhang
  • Geng-Sheng Shi
  • Ling-Fei Ren
  • Fei-Qing Hu
  • Sheng-Lai Li
  • Zhi-Jian Xie


A new peptide scaffold was made by mixing pure RADA16 (Ac-RADARADARADARADA-CONH2) and designer peptide RGDA16 (Ac-RADARGDARADARGDA-CONH2) solutions, and investigate any effect on attachment, spreading and proliferation of pre-osteoblast (MC3T3-E1). The peptides, RADA16 and RGDA16, were custom-synthesized. They were solubilized in deionized water at a concentration of 10 mg/ml (1% w/v), the RGDA16 peptide solution was mixed 1:1 with RADA16 solution and a new peptide solution RGDAmix was produced. The RGDAmix and RADA16 solution were directly loaded in 96-well plates and cover slips, and two different peptide scaffolds were formed with the addition of maintenance medium (α-MEM) in several minutes. About 1.0 × 104 MC3T3-E1 cells were seeded on each hydrogel scaffold, and then the cell morphological changes were observed using a fluorescence microscope at 1 h, 3 h and 24 h timepoint, respectively. Cell attachment was evaluated 1 h, 3 h and 24 h after cell seeding and cell proliferation was determined 4d, 7d and 14d after cell seeding. The RGDAmix scaffold significantly promoted the initial cell attachment compared with the RADA16 scaffold. MC3T3-E1 cells adhered and spread well on both scaffolds, however, cells spread better on the RGDAmix scaffold than on the RADA16 scaffold. Cell proliferation was greatly stimulated when cultured on RGDAmix scaffold. The RGD sequence contained peptide scaffold RGDAmix significantly enhances MC3T3-E1 cells attachment, spreading and proliferation.


Cell Attachment Hydrogel Scaffold Footprint Area Nanofiber Scaffold Promote Cell Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was sponsored by Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents. And supported by Grant of Health Bureau of Zhejiang Province (WKJ 2007-2-015) and Grant of Science and Technology Department of Zhejiang Province (2007C 23016), China.


  1. 1.
    S. Zhang, T. Holmes, C. Lockshin, A. Rich, Proc. Nat. Acad. Sci. USA 90, 3334 (1993). doi: 10.1073/pnas.90.8.3334 PubMedCrossRefADSGoogle Scholar
  2. 2.
    S. Zhang, T.C. Holmes, C.M. DiPersio, R.O. Hynes, X. Su, A. Rich, Biomaterials 16, 1385 (1995). doi: 10.1016/0142-9612(95)96874-Y PubMedCrossRefGoogle Scholar
  3. 3.
    J. Kisiday, M. Jin, B. Kurz, H. Hung, C. Semino, S. Zhang, A.J. Grodzinsky, Proc. Nat. Acad. Sci. USA 99, 9996 (2002). doi: 10.1073/pnas.142309999 PubMedCrossRefADSGoogle Scholar
  4. 4.
    R.G. Ellis-Behnke, Y.X. Liang, S.W. You, D.K. Tay, S. Zhang, K.F. So, G.E. Schneider, Proc. Nat. Acad. Sci. USA 103, 5054 (2006). doi: 10.1073/pnas.0600559103 PubMedCrossRefADSGoogle Scholar
  5. 5.
    F. Gelain, D. Bottai, A. Vescovi, S. Zhang, PLoS ONE 1, e119 (2006). doi: 10.1371/journal.pone.0000119 PubMedCrossRefGoogle Scholar
  6. 6.
    A. Horii, X. Wang, F. Gelain, S. Zhang, PLoS ONE 2, e190 (2007). doi: 10.1371/journal.pone.0000190 PubMedCrossRefGoogle Scholar
  7. 7.
    K.M. Galler, A. Cavender, V. Yuwono, H. Dong, S. Shi, G. Schmalz, J.D. Hartgerink, R.N. D’Souza, Tissue Eng. Part A 14, 2051 (2008). doi: 10.1089/ten.tea.2007.0413 PubMedCrossRefGoogle Scholar
  8. 8.
    K. Hamada, M. Hirose, T. Yamashita, H. Ohgushi, J. Biomed. Mater. Res. A 84, 128 (2008). doi: 10.1002/jbm.a.31439 PubMedGoogle Scholar
  9. 9.
    T.C. Holmes, S. de Lacalle, X. Su, G. Liu, A. Rich, S. Zhang, Proc. Nat. Acad. Sci. USA 97, 6728 (2000). doi: 10.1073/pnas.97.12.6728 PubMedCrossRefADSGoogle Scholar
  10. 10.
    D.A. Narmoneva, O. Oni, A.L. Sieminski, S. Zhang, J.P. Gertler, R.D. Kamm, R.T. Lee, Biomaterials 26, 4837 (2005). doi: 10.1016/j.biomaterials.2005.01.005 PubMedCrossRefGoogle Scholar
  11. 11.
    M.E. Davis, P.C. Hsieh, T. Takahashi, Q. Song, S. Zhang, R.D. Kamm, A.J. Grodzinsky, P. Anversa, R.T. Lee, Proc. Nat. Acad. Sci. USA 103, 8155 (2006). doi: 10.1073/pnas.0602877103 PubMedCrossRefADSGoogle Scholar
  12. 12.
    M.A. Bokhari, G. Akay, S. Zhang, M.A. Birch, Biomaterials 26, 5198 (2005). doi: 10.1016/j.biomaterials.2005.01.040 PubMedCrossRefGoogle Scholar
  13. 13.
    M.E. Davis, J.P. Motion, D.A. Narmoneva, T. Takahashi, D. Hakuno, R.D. Kamm, S. Zhang, R.T. Lee, Circulation 111, 442 (2005). doi: 10.1161/01.CIR.0000153847.47301.80 PubMedCrossRefGoogle Scholar
  14. 14.
    M.D. Pierschbacher, E. Ruoslahti, Nature 309, 30 (1984). doi: 10.1038/309030a0 PubMedCrossRefADSGoogle Scholar
  15. 15.
    B.E. Rapuano, C. Wu, D.E. MacDonald, J. Orthop. Res. 22, 353 (2004). doi: 10.1016/S0736-0266(03)00180-3 PubMedCrossRefGoogle Scholar
  16. 16.
    S. Verrier, S. Pallu, R. Bareille, A. Jonczyk, J. Meyer, M. Dard, J. Amedee, Biomaterials 23, 585 (2002). doi: 10.1016/S0142-9612(01)00145-4 PubMedCrossRefGoogle Scholar
  17. 17.
    A.R. El-Ghannam, P. Ducheyne, M. Risbud, C.S. Adams, I.M. Shapiro, D. Castner, S. Golledge, R.J. Composto, J. Biomed. Mater. Res. 68, 615 (2004). doi: 10.1002/jbm.a.20051 CrossRefGoogle Scholar
  18. 18.
    A. Rezania, C.H. Thomas, A.B. Branger, C.M. Waters, K.E. Healy, J. Biomed. Mater. Res. 37, 9 (1997). doi: 10.1002/(SICI)1097-4636(199710)37:1<9::AID-JBM2>3.0.CO;2-W PubMedCrossRefGoogle Scholar
  19. 19.
    A.G. Secchi, V. Grigoriou, I.M. Shapiro, E.A. Cavalcanti-Adam, R.J. Composto, P. Ducheyne, C.S. Adams, J. Biomed. Mater. Res. 83, 577 (2007). doi: 10.1002/jbm.a.31007 CrossRefGoogle Scholar
  20. 20.
    A.K. Shah, R.K. Sinha, N.J. Hickok, R.S. Tuan, Bone 24, 499 (1999). doi: 10.1016/S8756-3282(99)00077-0 PubMedCrossRefGoogle Scholar
  21. 21.
    M. Schuler, G.R. Owen, D.W. Hamilton, M. de Wild, M. Textor, D.M. Brunette, S.G. Tosatti, Biomaterials 27, 4003 (2006). doi: 10.1016/j.biomaterials.2006.03.009 PubMedCrossRefGoogle Scholar
  22. 22.
    R.K. Sinha, R.S. Tuan, Bone 18, 451 (1996). doi: 10.1016/8756-3282(96)00044-0 PubMedCrossRefGoogle Scholar
  23. 23.
    H. Kumagai, M. Tajima, Y. Ueno, Y. Giga-Hama, M. Ohba, Biochem. Biophys. Res. Commun. 177, 74 (1991). doi: 10.1016/0006-291X(91)91950-H PubMedCrossRefGoogle Scholar
  24. 24.
    W.J. Grzesik, B. Ivanov, F.A. Robey, J. Southerland, M. Yamauchi, J. Dent. Res. 77, 1606 (1998). doi: 10.1177/00220345980770080801 PubMedCrossRefGoogle Scholar
  25. 25.
    R.H. Schmedlen, K.S. Masters, J.L. West, Biomaterials 23, 4325 (2002). doi: 10.1016/S0142-9612(02)00177-1 PubMedCrossRefGoogle Scholar
  26. 26.
    J.A. Burdick, K.S. Anseth, Biomaterials 23, 4315 (2002). doi: 10.1016/S0142-9612(02)00176-X PubMedCrossRefGoogle Scholar
  27. 27.
    H. Shin, S. Jo, A.G. Mikos, J. Biomed. Mater. Res. 61, 169 (2002). doi: 10.1002/jbm.10193 PubMedCrossRefGoogle Scholar
  28. 28.
    F. Yang, C.G. Williams, D.A. Wang, H. Lee, P.N. Manson, J. Elisseeff, Biomaterials 26, 5991 (2005). doi: 10.1016/j.biomaterials.2005.03.018 PubMedCrossRefGoogle Scholar
  29. 29.
    A.L. Prieto, G.M. Edelman, K.L. Crossin, Proc. Nat. Acad. Sci. USA 90, 10154 (1993). doi: 10.1073/pnas.90.21.10154 PubMedCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Feng Zhang
    • 1
  • Geng-Sheng Shi
    • 2
  • Ling-Fei Ren
    • 2
  • Fei-Qing Hu
    • 1
  • Sheng-Lai Li
    • 1
  • Zhi-Jian Xie
    • 1
  1. 1.Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital, College of MedicineZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Taizhou Hospital of Zhejiang ProvinceLinhaiPeople’s Republic of China

Personalised recommendations