Skip to main content

Advertisement

Log in

Designer self-assembling peptide scaffold stimulates pre-osteoblast attachment, spreading and proliferation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A new peptide scaffold was made by mixing pure RADA16 (Ac-RADARADARADARADA-CONH2) and designer peptide RGDA16 (Ac-RADARGDARADARGDA-CONH2) solutions, and investigate any effect on attachment, spreading and proliferation of pre-osteoblast (MC3T3-E1). The peptides, RADA16 and RGDA16, were custom-synthesized. They were solubilized in deionized water at a concentration of 10 mg/ml (1% w/v), the RGDA16 peptide solution was mixed 1:1 with RADA16 solution and a new peptide solution RGDAmix was produced. The RGDAmix and RADA16 solution were directly loaded in 96-well plates and cover slips, and two different peptide scaffolds were formed with the addition of maintenance medium (α-MEM) in several minutes. About 1.0 × 104 MC3T3-E1 cells were seeded on each hydrogel scaffold, and then the cell morphological changes were observed using a fluorescence microscope at 1 h, 3 h and 24 h timepoint, respectively. Cell attachment was evaluated 1 h, 3 h and 24 h after cell seeding and cell proliferation was determined 4d, 7d and 14d after cell seeding. The RGDAmix scaffold significantly promoted the initial cell attachment compared with the RADA16 scaffold. MC3T3-E1 cells adhered and spread well on both scaffolds, however, cells spread better on the RGDAmix scaffold than on the RADA16 scaffold. Cell proliferation was greatly stimulated when cultured on RGDAmix scaffold. The RGD sequence contained peptide scaffold RGDAmix significantly enhances MC3T3-E1 cells attachment, spreading and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Zhang, T. Holmes, C. Lockshin, A. Rich, Proc. Nat. Acad. Sci. USA 90, 3334 (1993). doi:10.1073/pnas.90.8.3334

    Article  PubMed  ADS  CAS  Google Scholar 

  2. S. Zhang, T.C. Holmes, C.M. DiPersio, R.O. Hynes, X. Su, A. Rich, Biomaterials 16, 1385 (1995). doi:10.1016/0142-9612(95)96874-Y

    Article  PubMed  Google Scholar 

  3. J. Kisiday, M. Jin, B. Kurz, H. Hung, C. Semino, S. Zhang, A.J. Grodzinsky, Proc. Nat. Acad. Sci. USA 99, 9996 (2002). doi:10.1073/pnas.142309999

    Article  PubMed  ADS  CAS  Google Scholar 

  4. R.G. Ellis-Behnke, Y.X. Liang, S.W. You, D.K. Tay, S. Zhang, K.F. So, G.E. Schneider, Proc. Nat. Acad. Sci. USA 103, 5054 (2006). doi:10.1073/pnas.0600559103

    Article  PubMed  ADS  CAS  Google Scholar 

  5. F. Gelain, D. Bottai, A. Vescovi, S. Zhang, PLoS ONE 1, e119 (2006). doi:10.1371/journal.pone.0000119

    Article  PubMed  Google Scholar 

  6. A. Horii, X. Wang, F. Gelain, S. Zhang, PLoS ONE 2, e190 (2007). doi:10.1371/journal.pone.0000190

    Article  PubMed  Google Scholar 

  7. K.M. Galler, A. Cavender, V. Yuwono, H. Dong, S. Shi, G. Schmalz, J.D. Hartgerink, R.N. D’Souza, Tissue Eng. Part A 14, 2051 (2008). doi:10.1089/ten.tea.2007.0413

    Article  PubMed  CAS  Google Scholar 

  8. K. Hamada, M. Hirose, T. Yamashita, H. Ohgushi, J. Biomed. Mater. Res. A 84, 128 (2008). doi:10.1002/jbm.a.31439

    PubMed  Google Scholar 

  9. T.C. Holmes, S. de Lacalle, X. Su, G. Liu, A. Rich, S. Zhang, Proc. Nat. Acad. Sci. USA 97, 6728 (2000). doi:10.1073/pnas.97.12.6728

    Article  PubMed  ADS  CAS  Google Scholar 

  10. D.A. Narmoneva, O. Oni, A.L. Sieminski, S. Zhang, J.P. Gertler, R.D. Kamm, R.T. Lee, Biomaterials 26, 4837 (2005). doi:10.1016/j.biomaterials.2005.01.005

    Article  PubMed  CAS  Google Scholar 

  11. M.E. Davis, P.C. Hsieh, T. Takahashi, Q. Song, S. Zhang, R.D. Kamm, A.J. Grodzinsky, P. Anversa, R.T. Lee, Proc. Nat. Acad. Sci. USA 103, 8155 (2006). doi:10.1073/pnas.0602877103

    Article  PubMed  ADS  CAS  Google Scholar 

  12. M.A. Bokhari, G. Akay, S. Zhang, M.A. Birch, Biomaterials 26, 5198 (2005). doi:10.1016/j.biomaterials.2005.01.040

    Article  PubMed  CAS  Google Scholar 

  13. M.E. Davis, J.P. Motion, D.A. Narmoneva, T. Takahashi, D. Hakuno, R.D. Kamm, S. Zhang, R.T. Lee, Circulation 111, 442 (2005). doi:10.1161/01.CIR.0000153847.47301.80

    Article  PubMed  CAS  Google Scholar 

  14. M.D. Pierschbacher, E. Ruoslahti, Nature 309, 30 (1984). doi:10.1038/309030a0

    Article  PubMed  ADS  CAS  Google Scholar 

  15. B.E. Rapuano, C. Wu, D.E. MacDonald, J. Orthop. Res. 22, 353 (2004). doi:10.1016/S0736-0266(03)00180-3

    Article  PubMed  CAS  Google Scholar 

  16. S. Verrier, S. Pallu, R. Bareille, A. Jonczyk, J. Meyer, M. Dard, J. Amedee, Biomaterials 23, 585 (2002). doi:10.1016/S0142-9612(01)00145-4

    Article  PubMed  CAS  Google Scholar 

  17. A.R. El-Ghannam, P. Ducheyne, M. Risbud, C.S. Adams, I.M. Shapiro, D. Castner, S. Golledge, R.J. Composto, J. Biomed. Mater. Res. 68, 615 (2004). doi:10.1002/jbm.a.20051

    Article  CAS  Google Scholar 

  18. A. Rezania, C.H. Thomas, A.B. Branger, C.M. Waters, K.E. Healy, J. Biomed. Mater. Res. 37, 9 (1997). doi:10.1002/(SICI)1097-4636(199710)37:1<9::AID-JBM2>3.0.CO;2-W

    Article  PubMed  CAS  Google Scholar 

  19. A.G. Secchi, V. Grigoriou, I.M. Shapiro, E.A. Cavalcanti-Adam, R.J. Composto, P. Ducheyne, C.S. Adams, J. Biomed. Mater. Res. 83, 577 (2007). doi:10.1002/jbm.a.31007

    Article  CAS  Google Scholar 

  20. A.K. Shah, R.K. Sinha, N.J. Hickok, R.S. Tuan, Bone 24, 499 (1999). doi:10.1016/S8756-3282(99)00077-0

    Article  PubMed  CAS  Google Scholar 

  21. M. Schuler, G.R. Owen, D.W. Hamilton, M. de Wild, M. Textor, D.M. Brunette, S.G. Tosatti, Biomaterials 27, 4003 (2006). doi:10.1016/j.biomaterials.2006.03.009

    Article  PubMed  CAS  Google Scholar 

  22. R.K. Sinha, R.S. Tuan, Bone 18, 451 (1996). doi:10.1016/8756-3282(96)00044-0

    Article  PubMed  CAS  Google Scholar 

  23. H. Kumagai, M. Tajima, Y. Ueno, Y. Giga-Hama, M. Ohba, Biochem. Biophys. Res. Commun. 177, 74 (1991). doi:10.1016/0006-291X(91)91950-H

    Article  PubMed  CAS  Google Scholar 

  24. W.J. Grzesik, B. Ivanov, F.A. Robey, J. Southerland, M. Yamauchi, J. Dent. Res. 77, 1606 (1998). doi:10.1177/00220345980770080801

    Article  PubMed  CAS  Google Scholar 

  25. R.H. Schmedlen, K.S. Masters, J.L. West, Biomaterials 23, 4325 (2002). doi:10.1016/S0142-9612(02)00177-1

    Article  PubMed  CAS  Google Scholar 

  26. J.A. Burdick, K.S. Anseth, Biomaterials 23, 4315 (2002). doi:10.1016/S0142-9612(02)00176-X

    Article  PubMed  CAS  Google Scholar 

  27. H. Shin, S. Jo, A.G. Mikos, J. Biomed. Mater. Res. 61, 169 (2002). doi:10.1002/jbm.10193

    Article  PubMed  CAS  Google Scholar 

  28. F. Yang, C.G. Williams, D.A. Wang, H. Lee, P.N. Manson, J. Elisseeff, Biomaterials 26, 5991 (2005). doi:10.1016/j.biomaterials.2005.03.018

    Article  PubMed  CAS  Google Scholar 

  29. A.L. Prieto, G.M. Edelman, K.L. Crossin, Proc. Nat. Acad. Sci. USA 90, 10154 (1993). doi:10.1073/pnas.90.21.10154

    Article  PubMed  ADS  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents. And supported by Grant of Health Bureau of Zhejiang Province (WKJ 2007-2-015) and Grant of Science and Technology Department of Zhejiang Province (2007C 23016), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Jian Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Shi, GS., Ren, LF. et al. Designer self-assembling peptide scaffold stimulates pre-osteoblast attachment, spreading and proliferation. J Mater Sci: Mater Med 20, 1475–1481 (2009). https://doi.org/10.1007/s10856-009-3700-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3700-x

Keywords

Navigation