Coating process and early stage adhesion evaluation of poly(2-hydroxy-ethyl-methacrylate) hydrogel coating of 316L steel surface for stent applications

  • Laura Indolfi
  • Filippo Causa
  • Paolo Antonio Netti


In this study, a spray-coating method has been set up with the aim to control the coating of poly(2-hydroxy-ethyl-methacrylate) (pHEMA), an hydrophilic polymeric hydrogel, onto the complex surface of a 316L steel stent for percutaneous coronary intervention (PCI). By varying process parameters, tuneable thicknesses, from 5 to 20 μm, have been obtained with uniform and homogeneous surface without crack or bridges. Surface characteristics of pHEMA coating onto metal surface have been investigated through FTIR-ATR, contact angle measurement, SEM, EDS and AFM. Moreover, results from Single-Lap-Joint and Pull-Off adhesion tests as well as calorimetric analysis of glass transition temperature suggested that pHEMA deposition is firmly adhered on metallic surface. The pHEMA coating evaluation of roughness, wettability together with its morphological and chemical stability after three cycles of expansion-crimping along with preliminary results after 6 months demonstrates the suitability of the coating for surgical implantation of stent.


Solvent Evaporation 316L Stainless Steel Adhesion Test Laminar Flow Hood Polymeric Hydrogel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors warmly wish to thank Paolo Carboni for his assistance in spray-coating technology set-up, Antonio Gloria for discussion on mechanical tests, and Cesare Luponio for helpful contribution on AFM observations.


  1. 1.
    M.C. Martins, D. Wang, J. Ji, L. Feng, M.A. Barbosa, Albumin and fibrinogen adsorption on PU–PHEMA surfaces. Biomaterials 24, 2067–2076 (2003). doi: 10.1016/S0142-9612(03)00002-4 PubMedCrossRefGoogle Scholar
  2. 2.
    B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.L. Lemons, Biomaterials science—An introduction to materials in medicine (Academic Press, CA, USA, San Diego, 1996), pp. 84–94Google Scholar
  3. 3.
    R.S. Greco, Implantation biology, the host response and biomedical devices. Ann Arbour (CRC Press, USA, 1994), pp. 68–80Google Scholar
  4. 4.
    S. Sapatnekar, J.M. Anderson, Hemocompatibility: effects on humoral elements. In: von Recum AF, editor. Handbook of biomaterials evaluation, Scientific technical and clinical testing of implant materials (Taylor & Francis, Philadelphia, PA, USA, 1999), pp. 353–365Google Scholar
  5. 5.
    F.G. Welt, C. Rogers, Inflammation and restenosis in the stent era. Arterioscler. Thromb. Vasc. Biol. 22, 1769–1776 (2002). doi: 10.1161/01.ATV.0000037100.44766.5B PubMedCrossRefGoogle Scholar
  6. 6.
    D.J. Mooney, R.S. Langer, Engineering biomaterials for tissue engineering: the 10–100 micron size scale, in The biomedical engineering handbook, ed. by J.D. Bronzino (CRC Press, Boca Raton, FL, 1995), pp. 1609–1618Google Scholar
  7. 7.
    D.H. Kim, M. Abidian, D.C. Martin, Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. J. Biomed. Mater. Res. 71A, 577–585 (2004). doi: 10.1002/jbm.a.30124 CrossRefGoogle Scholar
  8. 8.
    K.S. Anseth, A.T. Metters, S.J. Bryant, P.J. Martens, J.H. Elisseeff, C.N. Bowman, In situ forming degradable networks and their application in tissue engineering and drug delivery. J. Control. Release 78, 199–209 (2002). doi: 10.1016/S0168-3659(01)00500-4 PubMedCrossRefGoogle Scholar
  9. 9.
    T.D. Dziubla, M.C. Torjman, J.I. Joseph, M. Murphy-Tatum, A.M. Lowman, Evaluation of porous networks of poly(2-hydroxyethyl methacrylate) as interfacial drug delivery devices. Biomaterials 22, 2893–2899 (2001). doi: 10.1016/S0142-9612(01)00035-7 PubMedCrossRefGoogle Scholar
  10. 10.
    B. Baroli, Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications. J. Chem. Technol. Biotechnol. 81, 491–499 (2006). doi: 10.1002/jctb.1468 CrossRefGoogle Scholar
  11. 11.
    A.J. Cadotte, T.B. DeMarse, Poly-HEMA as a drug delivery device for in vitro neural networks on micro-electrode arrays. J. Neural Eng. 2, 114–122 (2005). doi: 10.1088/1741-2560/2/4/007 PubMedCrossRefADSGoogle Scholar
  12. 12.
    J.P. Montheard, M. Chatzopoulos, D. Chappard, 2-Hydroxyethylmethacrylate (HEMA): chemical properties and applications in biomedical fields. JMS-Rev. Macromol. Chem. Phys. C32, 1–34 (1992)Google Scholar
  13. 13.
    O. Wichterle, D. Lim, Hydrophilic gels in biologic use. Nature 185, 117–118 (1960)CrossRefADSGoogle Scholar
  14. 14.
    A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 43, 3–12 (2002). doi: 10.1016/S0169-409X(01)00239-3 CrossRefGoogle Scholar
  15. 15.
    A. Abizaid, M.A. Costa, M. Centemero et al., Clinical and economic impact of diabetesmellitus on percutaneous and surgical treatment ofmultivessel coronary disease patients: insights from the arterial revascularization therapy study (ARTS) trial. Circulation 104, 533–538 (2001). doi: 10.1161/hc3101.093700 PubMedCrossRefGoogle Scholar
  16. 16.
    A. Schuesseler, et al. Manufacturing of stents: optimize the stent with new manufacturing technologies, In: New technologies in vascular biomaterials: fundamentals about stent II, ed. by N. Chakfè, B. Durand, J-G Kretz (EUROPROT, Strasbourg, France, 2007), pp. 93–106Google Scholar
  17. 17.
    M.N. Babapulle, L. Joseph, P. Belisle, J.M. Brophy, M.J. Eisenberg, A hierarchical bayesian meta-analysis of randomised clinical trials of drug-eluting stents. Lancet 364, 583–591 (2004). doi: 10.1016/S0140-6736(04)16850-5 PubMedCrossRefGoogle Scholar
  18. 18.
    G. Sandhu, B. Doyle, R. Singh, M. Bell, J. Bresnahan, V. Mathew, D. Holmes, A. Lerman, C. Rihal, Frequency, etiology, treatment, and outcomes of drug-eluting stent thrombosis during one year of follow-up. Am. J. Cardiol. 99(4), 465–469 (2007). doi: 10.1016/j.amjcard.2006.08.058 PubMedCrossRefGoogle Scholar
  19. 19.
    Y. Nakayama, T. Masuda, Development of a polymeric matrix metalloproteinase inhibitor as a bioactive stent coating material for prevention of restenosis. J. Biomed. Mater. Res. B Appl. Biomater. 80B, 260–267 (2007). doi: 10.1002/jbm.b.30592 CrossRefGoogle Scholar
  20. 20.
    C.D. Rogers, Optimal stent design for drug delivery. Rev. Cardiovasc. Med. 5(Suppl 2), S9–S15 (2004). doi: 10.1016/j.carrad.2004.04.002 PubMedGoogle Scholar
  21. 21.
    S.V. Ranade, K.M. Miller, R.E. Richard, A.K. Chan, M.J. Allen, M.N. Helmus, Physical characterization of controlled release of paclitaxel from the TAXUS Express2 drug-eluting stent. J. Biomed. Mater. Res. A 71, 625–634 (2004). doi: 10.1002/jbm.a.30188 PubMedCrossRefGoogle Scholar
  22. 22.
    R. Virmani, A. Farb, G. Guagliumi, F.D. Kolodgie, Drug-eluting stents: caution and concerns for long-term outcome. Coron. Artery Dis. 15, 313–318 (2004). doi: 10.1097/00019501-200409000-00003 PubMedCrossRefGoogle Scholar
  23. 23.
    N. Kipshidze, M.B. Leon, M. Tsapenko, R. Falotico, G.A. Kopia, J. Moses, Update on sirolimus drug-eluting stents. Curr. Pharm. Des. 10, 337–348 (2004). doi: 10.2174/1381612043453315 PubMedCrossRefGoogle Scholar
  24. 24.
    L. Buellesfeld. Second generation drug-eluting stents. Clinical experience with new drugs and designs, In: New technologies in vascular biomaterials: fundamentals about stent II, ed. by N. Chakfè, B. Durand, J-G Kretz (EUROPROT, Strasbourg, France, 2007), pp. 161–168Google Scholar
  25. 25.
    J.L. West, J.A. Hubbell, Separation of the arterial wall from blood contact using hydrogel barriers reduces intimal thickening after balloon injury in the rat: the role of medial and luminal factors in arterial healing. Proc. Natl Acad. Sci. USA 93, 13188–13193 (1996). doi: 10.1073/pnas.93.23.13188 PubMedCrossRefADSGoogle Scholar
  26. 26.
    C. Dumoulin, B. Cochelin, Mechanical behaviour modelling of balloon-expandable stents. J. Biomech. 33, 1461–1470 (2000). doi: 10.1016/S0021-9290(00)00098-1 PubMedCrossRefGoogle Scholar
  27. 27.
    D. Darwis et al., Characterization of poly(vinyl alcohol) hydrogel for prosthetic intervertebral disc nucleus. Radiat. Phys. Chem. 63, 539–542 (2002). doi: 10.1016/S0969-806X(01)00636-3 CrossRefADSGoogle Scholar
  28. 28.
    J.S. Belkas, C.A. Munro, M.S. Shoichet, M. Johnston, R. Midha, Long-term in vivo biomechanical properties and biocompatibility of poly(2-hydroxyethyl methacrylate–co-methyl methacrylate) nerve conduits. Biomaterials 26, 1741–1749 (2005). doi: 10.1016/j.biomaterials.2004.05.031 PubMedCrossRefGoogle Scholar
  29. 29.
    D.L. Whitehouse, Handbook of surface metrology. (Institute of Physics Publishing, Bristol, 1994), ISBN 0-7503-0039-6Google Scholar
  30. 30.
    Roman. Jantas, Synthesis and characterization of poly(2-hydroxyethylmethacrylate)-1-naphthylacetic acid adduct. Polym. Bull. 58, 513–520 (2007). doi: 10.1007/s00289-006-0696-y CrossRefGoogle Scholar
  31. 31.
    H. Wang, K. Siow, Measurement of Tg in epoxy resins by DSC-effects of residual stress, polym. Eng. Sci. 39(3), 422–429 (1999)CrossRefGoogle Scholar
  32. 32.
    A. Roguin, E. Grenadier, Stent-based percutaneous coronary interventions in small coronary arteries. Acute Card. Care 8(2), 70–74 (2006)PubMedGoogle Scholar
  33. 33.
    S.V. Ranade et al., Physical characterization of controlled release of paclitaxel from TAXUS express drug eluting stent. J. Biomed. Mater. Res. A 71A, 625–634 (2004). doi: 10.1002/jbm.a.30188 CrossRefGoogle Scholar
  34. 34.
    P.P. de Jaegere, P.J. de Feyter, W.J. van der Giessen, P.W. Serruys, Endovascular stent: preliminary clinical results and future developrments. Clin. Cardiol. 16(5), 369–378 (1993)PubMedCrossRefGoogle Scholar
  35. 35.
    T.W. Chung, D.Z. Liu, S.Y. Wang, S.S. Wang, Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials 24, 4655–4661 (2003). doi: 10.1016/S0142-9612(03)00361-2 PubMedCrossRefGoogle Scholar
  36. 36.
    M. Lampin, R. Warocquier-Clerout, C. Legris, M. Degrange, M.F. Sigot-Luizard, Correlation between substratum roughness and wet ability, cell adhesion and cell migration. J. Biomed. Mater. Res. 36, 99–108 (1997). doi: 10.1002/(SICI)1097-4636(199707)36:1<99::AID-JBM12>3.0.CO;2-E PubMedCrossRefGoogle Scholar
  37. 37.
    A. Dibra et al., Influence of stent surface topography on the outcomes of patients undergoing coronary stenting: a randomized double-blind controlled trial. Catheter. Cardiovasc. Interv. 65, 374–380 (2005). doi: 10.1002/ccd.20400 PubMedCrossRefGoogle Scholar
  38. 38.
    A. Severini et al., Polyurethane-coated, self-expandable biliary stent: an experimental study. Acad. Radiol. 2, 1078–1081 (1995). doi: 10.1016/S1076-6332(05)80520-3 PubMedCrossRefGoogle Scholar
  39. 39.
    P. Hanefeld, U. Westedt, R. Wombacher et al., Coating of poly(p-xylylene) by PLA-PEO-PLA triblock copolymers with excellent polymer-polymer adhesion for stent applications. Biomacromolecules 7, 2086–2090 (2006). doi: 10.1021/bm050642k PubMedCrossRefGoogle Scholar
  40. 40.
    T. Yua, M. Shoichet, Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering. Biomaterials 26, 1507–1514 (2005). doi: 10.1016/j.biomaterials.2004.05.012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Laura Indolfi
    • 1
    • 2
  • Filippo Causa
    • 3
  • Paolo Antonio Netti
    • 1
    • 2
  1. 1.Interdisciplinary Research Center on Biomaterials, CRIBUniversity of NaplesNaplesItaly
  2. 2.Italian Institute of Technology (IIT)GenoaItaly
  3. 3.Department of Experimental and Clinical MedicineUniversity of Magna GraeciaCatanzaroItaly

Personalised recommendations