Skip to main content
Log in

Coating process and early stage adhesion evaluation of poly(2-hydroxy-ethyl-methacrylate) hydrogel coating of 316L steel surface for stent applications

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this study, a spray-coating method has been set up with the aim to control the coating of poly(2-hydroxy-ethyl-methacrylate) (pHEMA), an hydrophilic polymeric hydrogel, onto the complex surface of a 316L steel stent for percutaneous coronary intervention (PCI). By varying process parameters, tuneable thicknesses, from 5 to 20 μm, have been obtained with uniform and homogeneous surface without crack or bridges. Surface characteristics of pHEMA coating onto metal surface have been investigated through FTIR-ATR, contact angle measurement, SEM, EDS and AFM. Moreover, results from Single-Lap-Joint and Pull-Off adhesion tests as well as calorimetric analysis of glass transition temperature suggested that pHEMA deposition is firmly adhered on metallic surface. The pHEMA coating evaluation of roughness, wettability together with its morphological and chemical stability after three cycles of expansion-crimping along with preliminary results after 6 months demonstrates the suitability of the coating for surgical implantation of stent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.C. Martins, D. Wang, J. Ji, L. Feng, M.A. Barbosa, Albumin and fibrinogen adsorption on PU–PHEMA surfaces. Biomaterials 24, 2067–2076 (2003). doi:10.1016/S0142-9612(03)00002-4

    Article  PubMed  CAS  Google Scholar 

  2. B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.L. Lemons, Biomaterials science—An introduction to materials in medicine (Academic Press, CA, USA, San Diego, 1996), pp. 84–94

    Google Scholar 

  3. R.S. Greco, Implantation biology, the host response and biomedical devices. Ann Arbour (CRC Press, USA, 1994), pp. 68–80

    Google Scholar 

  4. S. Sapatnekar, J.M. Anderson, Hemocompatibility: effects on humoral elements. In: von Recum AF, editor. Handbook of biomaterials evaluation, Scientific technical and clinical testing of implant materials (Taylor & Francis, Philadelphia, PA, USA, 1999), pp. 353–365

    Google Scholar 

  5. F.G. Welt, C. Rogers, Inflammation and restenosis in the stent era. Arterioscler. Thromb. Vasc. Biol. 22, 1769–1776 (2002). doi:10.1161/01.ATV.0000037100.44766.5B

    Article  PubMed  CAS  Google Scholar 

  6. D.J. Mooney, R.S. Langer, Engineering biomaterials for tissue engineering: the 10–100 micron size scale, in The biomedical engineering handbook, ed. by J.D. Bronzino (CRC Press, Boca Raton, FL, 1995), pp. 1609–1618

    Google Scholar 

  7. D.H. Kim, M. Abidian, D.C. Martin, Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. J. Biomed. Mater. Res. 71A, 577–585 (2004). doi:10.1002/jbm.a.30124

    Article  CAS  Google Scholar 

  8. K.S. Anseth, A.T. Metters, S.J. Bryant, P.J. Martens, J.H. Elisseeff, C.N. Bowman, In situ forming degradable networks and their application in tissue engineering and drug delivery. J. Control. Release 78, 199–209 (2002). doi:10.1016/S0168-3659(01)00500-4

    Article  PubMed  CAS  Google Scholar 

  9. T.D. Dziubla, M.C. Torjman, J.I. Joseph, M. Murphy-Tatum, A.M. Lowman, Evaluation of porous networks of poly(2-hydroxyethyl methacrylate) as interfacial drug delivery devices. Biomaterials 22, 2893–2899 (2001). doi:10.1016/S0142-9612(01)00035-7

    Article  PubMed  CAS  Google Scholar 

  10. B. Baroli, Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications. J. Chem. Technol. Biotechnol. 81, 491–499 (2006). doi:10.1002/jctb.1468

    Article  CAS  Google Scholar 

  11. A.J. Cadotte, T.B. DeMarse, Poly-HEMA as a drug delivery device for in vitro neural networks on micro-electrode arrays. J. Neural Eng. 2, 114–122 (2005). doi:10.1088/1741-2560/2/4/007

    Article  PubMed  ADS  Google Scholar 

  12. J.P. Montheard, M. Chatzopoulos, D. Chappard, 2-Hydroxyethylmethacrylate (HEMA): chemical properties and applications in biomedical fields. JMS-Rev. Macromol. Chem. Phys. C32, 1–34 (1992)

    CAS  Google Scholar 

  13. O. Wichterle, D. Lim, Hydrophilic gels in biologic use. Nature 185, 117–118 (1960)

    Article  ADS  Google Scholar 

  14. A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 43, 3–12 (2002). doi:10.1016/S0169-409X(01)00239-3

    Article  Google Scholar 

  15. A. Abizaid, M.A. Costa, M. Centemero et al., Clinical and economic impact of diabetesmellitus on percutaneous and surgical treatment ofmultivessel coronary disease patients: insights from the arterial revascularization therapy study (ARTS) trial. Circulation 104, 533–538 (2001). doi:10.1161/hc3101.093700

    Article  PubMed  CAS  Google Scholar 

  16. A. Schuesseler, et al. Manufacturing of stents: optimize the stent with new manufacturing technologies, In: New technologies in vascular biomaterials: fundamentals about stent II, ed. by N. Chakfè, B. Durand, J-G Kretz (EUROPROT, Strasbourg, France, 2007), pp. 93–106

  17. M.N. Babapulle, L. Joseph, P. Belisle, J.M. Brophy, M.J. Eisenberg, A hierarchical bayesian meta-analysis of randomised clinical trials of drug-eluting stents. Lancet 364, 583–591 (2004). doi:10.1016/S0140-6736(04)16850-5

    Article  PubMed  CAS  Google Scholar 

  18. G. Sandhu, B. Doyle, R. Singh, M. Bell, J. Bresnahan, V. Mathew, D. Holmes, A. Lerman, C. Rihal, Frequency, etiology, treatment, and outcomes of drug-eluting stent thrombosis during one year of follow-up. Am. J. Cardiol. 99(4), 465–469 (2007). doi:10.1016/j.amjcard.2006.08.058

    Article  PubMed  CAS  Google Scholar 

  19. Y. Nakayama, T. Masuda, Development of a polymeric matrix metalloproteinase inhibitor as a bioactive stent coating material for prevention of restenosis. J. Biomed. Mater. Res. B Appl. Biomater. 80B, 260–267 (2007). doi:10.1002/jbm.b.30592

    Article  CAS  Google Scholar 

  20. C.D. Rogers, Optimal stent design for drug delivery. Rev. Cardiovasc. Med. 5(Suppl 2), S9–S15 (2004). doi:10.1016/j.carrad.2004.04.002

    PubMed  Google Scholar 

  21. S.V. Ranade, K.M. Miller, R.E. Richard, A.K. Chan, M.J. Allen, M.N. Helmus, Physical characterization of controlled release of paclitaxel from the TAXUS Express2 drug-eluting stent. J. Biomed. Mater. Res. A 71, 625–634 (2004). doi:10.1002/jbm.a.30188

    Article  PubMed  CAS  Google Scholar 

  22. R. Virmani, A. Farb, G. Guagliumi, F.D. Kolodgie, Drug-eluting stents: caution and concerns for long-term outcome. Coron. Artery Dis. 15, 313–318 (2004). doi:10.1097/00019501-200409000-00003

    Article  PubMed  Google Scholar 

  23. N. Kipshidze, M.B. Leon, M. Tsapenko, R. Falotico, G.A. Kopia, J. Moses, Update on sirolimus drug-eluting stents. Curr. Pharm. Des. 10, 337–348 (2004). doi:10.2174/1381612043453315

    Article  PubMed  CAS  Google Scholar 

  24. L. Buellesfeld. Second generation drug-eluting stents. Clinical experience with new drugs and designs, In: New technologies in vascular biomaterials: fundamentals about stent II, ed. by N. Chakfè, B. Durand, J-G Kretz (EUROPROT, Strasbourg, France, 2007), pp. 161–168

  25. J.L. West, J.A. Hubbell, Separation of the arterial wall from blood contact using hydrogel barriers reduces intimal thickening after balloon injury in the rat: the role of medial and luminal factors in arterial healing. Proc. Natl Acad. Sci. USA 93, 13188–13193 (1996). doi:10.1073/pnas.93.23.13188

    Article  PubMed  ADS  CAS  Google Scholar 

  26. C. Dumoulin, B. Cochelin, Mechanical behaviour modelling of balloon-expandable stents. J. Biomech. 33, 1461–1470 (2000). doi:10.1016/S0021-9290(00)00098-1

    Article  PubMed  CAS  Google Scholar 

  27. D. Darwis et al., Characterization of poly(vinyl alcohol) hydrogel for prosthetic intervertebral disc nucleus. Radiat. Phys. Chem. 63, 539–542 (2002). doi:10.1016/S0969-806X(01)00636-3

    Article  ADS  CAS  Google Scholar 

  28. J.S. Belkas, C.A. Munro, M.S. Shoichet, M. Johnston, R. Midha, Long-term in vivo biomechanical properties and biocompatibility of poly(2-hydroxyethyl methacrylate–co-methyl methacrylate) nerve conduits. Biomaterials 26, 1741–1749 (2005). doi:10.1016/j.biomaterials.2004.05.031

    Article  PubMed  CAS  Google Scholar 

  29. D.L. Whitehouse, Handbook of surface metrology. (Institute of Physics Publishing, Bristol, 1994), ISBN 0-7503-0039-6

  30. Roman. Jantas, Synthesis and characterization of poly(2-hydroxyethylmethacrylate)-1-naphthylacetic acid adduct. Polym. Bull. 58, 513–520 (2007). doi:10.1007/s00289-006-0696-y

    Article  CAS  Google Scholar 

  31. H. Wang, K. Siow, Measurement of Tg in epoxy resins by DSC-effects of residual stress, polym. Eng. Sci. 39(3), 422–429 (1999)

    Article  CAS  Google Scholar 

  32. A. Roguin, E. Grenadier, Stent-based percutaneous coronary interventions in small coronary arteries. Acute Card. Care 8(2), 70–74 (2006)

    PubMed  Google Scholar 

  33. S.V. Ranade et al., Physical characterization of controlled release of paclitaxel from TAXUS express drug eluting stent. J. Biomed. Mater. Res. A 71A, 625–634 (2004). doi:10.1002/jbm.a.30188

    Article  CAS  Google Scholar 

  34. P.P. de Jaegere, P.J. de Feyter, W.J. van der Giessen, P.W. Serruys, Endovascular stent: preliminary clinical results and future developrments. Clin. Cardiol. 16(5), 369–378 (1993)

    Article  PubMed  Google Scholar 

  35. T.W. Chung, D.Z. Liu, S.Y. Wang, S.S. Wang, Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials 24, 4655–4661 (2003). doi:10.1016/S0142-9612(03)00361-2

    Article  PubMed  CAS  Google Scholar 

  36. M. Lampin, R. Warocquier-Clerout, C. Legris, M. Degrange, M.F. Sigot-Luizard, Correlation between substratum roughness and wet ability, cell adhesion and cell migration. J. Biomed. Mater. Res. 36, 99–108 (1997). doi:10.1002/(SICI)1097-4636(199707)36:1<99::AID-JBM12>3.0.CO;2-E

    Article  PubMed  CAS  Google Scholar 

  37. A. Dibra et al., Influence of stent surface topography on the outcomes of patients undergoing coronary stenting: a randomized double-blind controlled trial. Catheter. Cardiovasc. Interv. 65, 374–380 (2005). doi:10.1002/ccd.20400

    Article  PubMed  Google Scholar 

  38. A. Severini et al., Polyurethane-coated, self-expandable biliary stent: an experimental study. Acad. Radiol. 2, 1078–1081 (1995). doi:10.1016/S1076-6332(05)80520-3

    Article  PubMed  CAS  Google Scholar 

  39. P. Hanefeld, U. Westedt, R. Wombacher et al., Coating of poly(p-xylylene) by PLA-PEO-PLA triblock copolymers with excellent polymer-polymer adhesion for stent applications. Biomacromolecules 7, 2086–2090 (2006). doi:10.1021/bm050642k

    Article  PubMed  CAS  Google Scholar 

  40. T. Yua, M. Shoichet, Guided cell adhesion and outgrowth in peptide-modified channels for neural tissue engineering. Biomaterials 26, 1507–1514 (2005). doi:10.1016/j.biomaterials.2004.05.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors warmly wish to thank Paolo Carboni for his assistance in spray-coating technology set-up, Antonio Gloria for discussion on mechanical tests, and Cesare Luponio for helpful contribution on AFM observations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Antonio Netti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indolfi, L., Causa, F. & Netti, P.A. Coating process and early stage adhesion evaluation of poly(2-hydroxy-ethyl-methacrylate) hydrogel coating of 316L steel surface for stent applications. J Mater Sci: Mater Med 20, 1541–1551 (2009). https://doi.org/10.1007/s10856-009-3699-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-009-3699-z

Keywords

Navigation