Differential physical, rheological, and biological properties of rapid in situ gelable hydrogels composed of oxidized alginate and gelatin derived from marine or porcine sources

  • Huijuan Liao
  • Hanwei Zhang
  • Weiliam Chen


Marine derived gelatin is not known to associate with any communicable diseases to mammals and could be a reasonable substitute for gelatin derived from either bovine or porcine sources. The low melting point of marine gelatin (8°C) also offers greater formulation flexibility than mammalian derived gelatins. However, the sub-optimal physical properties of marine gelatin generally limit the interest to further develop it for biomedical applications. This study aimed at investigating the feasibility of using oxidized alginate (Oalg) as a high activity macromolecular crosslinker of marine gelatin to formulate in situ gelable hydrogels with the goal of enhancing the latter’s physical properties. The performance of Oalg/marine gelatin hydrogel was compared to Oalg/porcine gelatin hydrogel; in general, the physicomechanical properties of both hydrogels were comparable, with the hydrogels containing porcine gelatin exhibiting moderately higher mechanical strengths with shorter gelation times, smaller size pores, and higher swelling ratios. On the contrary, the biological performances of the two hydrogels were significantly difference. Cells cultured in the marine gelatin derived hydrogel grew significantly faster, with greater than 60% more cells by 7 days and they exhibited more spread-out conformations as compared those cultured in the porcine derived hydrogel. Production of ECM by cells cultured in the Oalg/marine gelatin hydrogel was up to 2.4 times greater than that of in the Oalg/porcine gelatin hydrogel. The biodegradation rate of the hydrogel formulated from marine gelatin was greater than its counterpart prepared from porcine gelatin. These differences have important implications in the biomedical applications of the two hydrogels.


Hydrogel Oxidized alginate Porcine gelatin Marine gelatin In situ 



This study was supported by a grant from the National Institutes of Health (R01 DK068401). Partial supported was also provided by an Enhanced Center of Advanced Technology (ECAT) grant of the New York State Foundation for Science Technology and Innovation (NYSTAR) administered by the Center for Biotechnology.


  1. 1.
    S.F. Badylak, Semin. Cell. Dev. Biol. 13, 377 (2002). doi: 10.1016/S1084952102000940 PubMedCrossRefGoogle Scholar
  2. 2.
    L. Cen, W. Liu, L. Cui, W. Zhang, Y. Cao, Pediatr. Res. 63, 492 (2008). doi: 10.1203/PDR.0b013e31816c5bc3 PubMedCrossRefGoogle Scholar
  3. 3.
    C. Boudet, I. Iliopoulos, O. Poncelet, M. Cloitre, Biomacromolecules 6, 3073 (2005). doi: 10.1021/bm0503928 PubMedCrossRefGoogle Scholar
  4. 4.
    F.H. Lin, C.H. Yao, J.S. Sun, H.C. Liu, C.W. Huang, Biomaterials 19, 905 (1998). doi: 10.1016/S0142-9612(97)00202-0 PubMedCrossRefGoogle Scholar
  5. 5.
    U. Frank, B. Rinkevich, Cell. Biol. Int. 23, 307 (1999). doi: 10.1006/cbir.1998.0352 PubMedCrossRefGoogle Scholar
  6. 6.
    A. Tanioka, K. Miyasaka, K. Ishikawa, Biopolymers 15, 1505 (1976). doi: 10.1002/bip.1976.360150806 PubMedCrossRefGoogle Scholar
  7. 7.
    M.E. Nimni, D. Ertl, J. Villanueva, B.S. Nimni, Am. J. Cardiovasc. Pathol. 3, 237 (1990)PubMedGoogle Scholar
  8. 8.
    Y. Otani, Y. Tabata, Y. Ikada, Biomaterials 19, 2091 (1998). doi: 10.1016/S0142-9612(98)00121-5 PubMedCrossRefGoogle Scholar
  9. 9.
    S. Young, M. Wong, Y. Tabata, A.G. Mikos, J. Control Release 109, 256 (2005). doi: 10.1016/j.jconrel.2005.09.023 PubMedCrossRefGoogle Scholar
  10. 10.
    G.A. Digenis, T.B. Gold, V.P. Shah, J. Pharm. Sci. 83, 915 (1994). doi: 10.1002/jps.2600830702 PubMedCrossRefGoogle Scholar
  11. 11.
    E. Esposito, R. Cortesi, C. Nastruzzi, Biomaterials 17, 2009 (1996). doi: 10.1016/0142-9612(95)00325-8 PubMedCrossRefGoogle Scholar
  12. 12.
    M.M. Giraud-Guille, L. Besseau, C. Chopin, P. Durand, D. Herbage, Biomaterials 21, 899 (2000). doi: 10.1016/S0142-9612(99)00244-6 PubMedCrossRefGoogle Scholar
  13. 13.
    H. Li, B.L. Liu, L.Z. Gao, H.L. Chen, Food Chem. 84, 65 (2004). doi: 10.1016/S0308-8146(03)00167-5 CrossRefGoogle Scholar
  14. 14.
    T. Nagai, E. Yamashita, K. Taniguchi, N. Kanamori, N. Suzuki, Food Chem. 72, 425 (2001). doi: 10.1016/S0308-8146(00)00249-1 CrossRefGoogle Scholar
  15. 15.
    M. Ogawa, R.J. Portier, M.W. Moody, J. Bell, M.A. Schexnayder, J.N. Losso, Food Chem. 88, 495 (2004). doi: 10.1016/j.foodchem.2004.02.006 CrossRefGoogle Scholar
  16. 16.
    T. Nagai, T. Ogawa, T. Nakamura, T. Ito, H. Nakagawa, K. Fujiki, J. Sci. Food Agric. 79, 855 (1999). doi:10.1002/(SICI)1097-0010(19990501)79:6<855::AID-JSFA299>3.0.CO;2-NCrossRefGoogle Scholar
  17. 17.
    B.S. Chiou, R.J. Avena-Bustillos, J. Shey, E. Yee, P.J. Bechtel, S.H. Imam, G.M. Glenn, E.J. Orts, Polymer (Guildf) 47, 6379 (2006). doi: 10.1016/j.polymer.2006.07.004 CrossRefGoogle Scholar
  18. 18.
    M.C. Gómez-Guillén, J. Turnay, M.D. Fernández-Díaz, N. Ulmo, M.A. Lizarbe, P. Montero, Food Hyd. 16, 25 (2002). doi: 10.1016/S0268-005X(01)00035-2 CrossRefGoogle Scholar
  19. 19.
    J. Wikström, M. Elomaa, H. Syväjärvi, J. Kuokkanen, M. Yliperttula, P. Honkakoski, A. Urtti, Biomaterials 29, 869 (2008). doi: 10.1016/j.biomaterials.2007.10.056 PubMedCrossRefGoogle Scholar
  20. 20.
    G.T. Franzesi, B. Ni, Y. Ling, A. Khademhosseini, J. Am. Chem. Soc. 128, 15064 (2006). doi: 10.1021/ja065867x PubMedCrossRefGoogle Scholar
  21. 21.
    B. Balakrishnan, M. Mohanty, P.R. Umashankar, A. Jayakrishnan, Biomaterials 26, 6335 (2005). doi: 10.1016/j.biomaterials.2005.04.012 PubMedCrossRefGoogle Scholar
  22. 22.
    C.G. Gomez, M. Rinaudo, M. Villar, Carbohydr. Polym. 67, 296 (2007). doi: 10.1016/j.carbpol.2006.05.025 CrossRefGoogle Scholar
  23. 23.
    L.H. Weng, X. Chen, W. Chen, Biomacromolecules 8, 1109 (2007). doi: 10.1021/bm0610065 PubMedCrossRefGoogle Scholar
  24. 24.
    R. Dorotka, U. Windberger, K. Macfelda, U. Bindreiter, C. Toma, S. Nehrer, Biomaterials 26, 3617 (2005). doi: 10.1016/j.biomaterials.2004.09.034 PubMedCrossRefGoogle Scholar
  25. 25.
    I.J. Haug, K.I. Draget, O. Smidsrød, Food Hyd. 18, 203 (2004). doi: 10.1016/S0268-005X(03)00065-1 CrossRefGoogle Scholar
  26. 26.
    E. Martz, H.M. Phillips, M.S. Steinberg, J. Cell. Sci. 16, 401 (1974)PubMedGoogle Scholar
  27. 27.
    V.M. Weaver, S. Lelièvre, J.N. Lakins, M.A. Chrenek, J.C. Jones, F. Giancotti, Z. Werb, M.J. Bissell, Cancer Cell 2, 205 (2002). doi: 10.1016/S1535-6108(02)00125-3 PubMedCrossRefGoogle Scholar
  28. 28.
    M.M. Zegers, L.E. O’Brien, W. Yu, A. Datta, K.E. Mostov, Trends Cell Biol. 13, 169 (2003). doi: 10.1016/S0962-8924(03)00036-9 PubMedCrossRefGoogle Scholar
  29. 29.
    L. Kjellén, U. Lindahl, Annu. Rev. Biochem. 60, 443 (1991). doi: 10.1146/ PubMedCrossRefGoogle Scholar
  30. 30.
    S.P. Scully, J.W. Lee, P.M. Ghert, W. Qi, Clin. Orthop. Relat. Res. 391, S72 (2001). doi: 10.1097/00003086-200110001-00008 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Health Science CenterState University of New York – Stony BrookStony BrookUSA

Personalised recommendations