Fibronectin modulates the morphology of osteoblast-like cells (MG-63) on nano-grooved substrates

  • Wei-Bor Tsai
  • Yen-Chung Ting
  • Jung-Yen Yang
  • Juin-Yih Lai
  • Hsuan-Liang Liu


Cell interactions with biomaterials are affected by surface topographic and chemical cues. Although it is well-known that nanometrical grooves/ridges structure modulates cellular spreading, elongation, and alignment, the combinational influence of surface topographic and chemical cues is not well studied. In this study, nano-textured silicon substrata with parallel ridges of 90, 250, or 500 nm wide, separated by grooves with equal width, were fabricated by electron beam lithography and dry etching techniques. Osteoblast-like cells, MG-63, were cultured on the patterned substrata with or without pre-adsorption of fibronectin. The cell morphology was imaged by scanning electron microscopy, and analyzed by image software. We found that FN coating initially modulated cellular spreading, length, and orientation on all types of grooved surfaces. However, after 24 h of culture, the cell morphology was not affected by FN coating on the 250-nm and 500-nm surfaces, while FN decreased cell alignment on the 90-nm surfaces. Our results suggest that surface chemical cues influence the initial cell-substratum contact, while the long-term cellular morphology is dictated by surface topographic cues.


Actin Filament Stress Fiber Cell Width Focal Contact Groove Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge financial support from National Science Council, Taiwan (93-2214-E-002-035). The authors also thank Ms Chia-Hua Lin for manuscript preparation.


  1. 1.
    M. Nakamura, T. Nishida, Cornea 18, 686 (1999). doi: 10.1097/00003226-199911000-00011 PubMedCrossRefGoogle Scholar
  2. 2.
    D.K. Olivero, L.T. Furcht, Invest. Ophthalmol. Vis. Sci. 34, 2825 (1993)PubMedGoogle Scholar
  3. 3.
    G.R. Martin, R. Timpl, Annu. Rev. Cell Biol. 3, 57 (1987). doi: 10.1146/annurev.cb.03.110187.000421 PubMedCrossRefGoogle Scholar
  4. 4.
    D. Gospodarowicz, G. Greenburg, J.M. Foidart, N. Savion, J. Cell Physiol. 107, 171 (1981). doi: 10.1002/jcp.1041070203 PubMedCrossRefGoogle Scholar
  5. 5.
    G.A. Abrams, S.L. Goodman, P.F. Nealey, M. Franco, C.J. Murphy, Cell Tissue Res. 299, 39 (2000). doi: 10.1007/s004410050004 PubMedCrossRefGoogle Scholar
  6. 6.
    R.O. Hynes, Cell 69, 11 (1992). doi: 10.1016/0092-8674(92)90115-S PubMedCrossRefGoogle Scholar
  7. 7.
    J.G. Steele, B.A. Dalton, G. Johnson, P.A. Underwood, Biomaterials 16, 1057 (1995). doi: 10.1016/0142-9612(95)98901-P PubMedCrossRefGoogle Scholar
  8. 8.
    J.G. Steele, G. Johnson, C. Mcfarland, B.A. Dalton, T.R. Gengenbach, R.C. Chatelier, P.A. Underwood, H.J. Griesser, J. Biomater. Sci. Polym. Ed. 6, 511 (1994). doi: 10.1163/156856294X00473 PubMedCrossRefGoogle Scholar
  9. 9.
    B. Geiger, A. Bershadsky, R. Pankov, K.M. Yamada, Nat. Rev. 2, 793 (2001)CrossRefGoogle Scholar
  10. 10.
    V. Petit, J.P. Thiery, Biol. Cell 92, 477 (2000). doi: 10.1016/S0248-4900(00)01101-1 PubMedCrossRefGoogle Scholar
  11. 11.
    P. Clark, P. Connolly, A.S. Curtis, J.A. Dow, C.D. Wilkinson, Development 108, 635 (1990)PubMedGoogle Scholar
  12. 12.
    S.-T. Li, in The biomedical engineering handbook, ed. by J.D. Bronzino (CRC Press Inc, Boca Raton, FL, 1995), p. 627Google Scholar
  13. 13.
    N. Matsumoto, S. Horibe, N. Nakamura, T. Senda, K. Shino, T. Ochi, Arch. Orthop. Trauma Surg. 117, 215 (1998). doi: 10.1007/s004020050232 PubMedCrossRefGoogle Scholar
  14. 14.
    P. Weiss, Growth 5(suppl), 163 (1941)Google Scholar
  15. 15.
    A.S.G. Curtis, C.D. Wilkinson, J. Biomater. Sci. Polym. Ed. 9, 1313 (1998). doi: 10.1163/156856298X00415 PubMedCrossRefGoogle Scholar
  16. 16.
    P. Clark, P. Connolly, A.S. Curtis, J.A. Dow, C.D. Wilkinson, Development 99, 439 (1987)PubMedGoogle Scholar
  17. 17.
    D.M. Brunette, Exp. Cell Res. 167, 203 (1986). doi: 10.1016/0014-4827(86)90217-X PubMedCrossRefGoogle Scholar
  18. 18.
    A.I. Teixeira, P.F. Nealey, C.J. Murphy, J. Biomed. Mater. Res. A 71, 369 (2004). doi: 10.1002/jbm.a.30089 PubMedCrossRefGoogle Scholar
  19. 19.
    B. Wojciak-Stothard, A. Curtis, W. Monaghan, K. MacDonald, C. Wilkinson, Exp. Cell Res. 223, 426 (1996). doi: 10.1006/excr.1996.0098 PubMedCrossRefGoogle Scholar
  20. 20.
    A.I. Teixeira, G.A. Abrams, P.J. Bertics, C.J. Murphy, P.F. Nealey, J. Cell Sci. 116, 1881 (2003). doi: 10.1242/jcs.00383 PubMedCrossRefGoogle Scholar
  21. 21.
    J.Y. Yang, Y.C. Ting, J.Y. Lai, H.L. Liu, H.W. Fang, W.B. Tsai (2008) J. Biomed. Mater. Res. A. doi: 10.1002/jbm.a.32130
  22. 22.
    R.O. Hynes, Sci. Am. 254, 42 (1986)PubMedADSCrossRefGoogle Scholar
  23. 23.
    W. Kern, D.A. Puotinen, RCA Rev 31, 187 (1970)Google Scholar
  24. 24.
    W.B. Tsai, T.A. Horbett, J. Biomater. Sci. Polym. Ed. 10, 163 (1999). doi: 10.1163/156856299X00117 PubMedCrossRefGoogle Scholar
  25. 25.
    M.J. Dalby, M.O. Riehle, S.J. Yarwood, C.D. Wilkinson, A.S. Curtis, Exp. Cell Res. 284, 274 (2003). doi: 10.1016/S0014-4827(02)00053-8 PubMedCrossRefGoogle Scholar
  26. 26.
    A.S.G. Curtis, in Biomechanics and cells, ed. by F. Fyall, A.J. El (Cambridge University Press, Cambridge, 1994), p. 121Google Scholar
  27. 27.
    G.A. Dunn, A.F. Brown, J. Cell Sci. 83, 313 (1986)PubMedGoogle Scholar
  28. 28.
    C.D.W. Wilkinson, M. Riehle, M. Wood, J. Gallagher, A.S.G. Curtis, Mater. Sci. Eng. C 19, 263 (2002)CrossRefGoogle Scholar
  29. 29.
    E.T. den Braber, J.E. de Ruijter, L.A. Ginsel, A.F. von Recum, J.A. Jansen, Biomaterials 17, 2037 (1996). doi: 10.1016/0142-9612(96)00032-4 CrossRefGoogle Scholar
  30. 30.
    X.F. Walboomers, W. Monaghan, A.S. Curtis, J.A. Jansen, J. Biomed. Mater. Res. 46, 212 (1999). doi :10.1002/(SICI)1097-4636(199908)46:2<212::AID-JBM10>3.0.CO;2-YPubMedCrossRefGoogle Scholar
  31. 31.
    B. Wojciak-Stothard, A.S. Curtis, W. Monaghan, M. McGrath, I. Sommer, C.D. Wilkinson, Cell Motil. Cytoskeleton 31, 147 (1995). doi: 10.1002/cm.970310207 PubMedCrossRefGoogle Scholar
  32. 32.
    N.Q. Balaban, U.S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, B. Geiger, Nat. Cell Biol. 3, 466 (2001). doi: 10.1038/35074532 PubMedCrossRefGoogle Scholar
  33. 33.
    X.F. Walboomers, L.A. Ginsel, J.A. Jansen, J. Biomed. Mater. Res. 51, 529 (2000). doi :10.1002/1097-4636(20000905)51:3<529::AID-JBM30>3.0.CO;2-RPubMedCrossRefGoogle Scholar
  34. 34.
    P.T. Ohara, R.C. Buck, Exp. Cell Res. 121, 235 (1979). doi: 10.1016/0014-4827(79)90002-8 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Wei-Bor Tsai
    • 1
  • Yen-Chung Ting
    • 1
  • Jung-Yen Yang
    • 2
  • Juin-Yih Lai
    • 3
  • Hsuan-Liang Liu
    • 4
  1. 1.Department of Chemical EngineeringNational Taiwan UniversityTaipeiTaiwan
  2. 2.National Nano Device LaboratoriesHsinchuTaiwan
  3. 3.R&D Center for Membrane Technology and Department of Chemical EngineeringChung Yuan Christian UniversityTaoyuanTaiwan
  4. 4.Graduate Institute of Biotechnology and Department of Chemical Engineering and BiotechnologyNational Taipei University of TechnologyTaipeiTaiwan

Personalised recommendations