Skip to main content
Log in

Fibronectin modulates the morphology of osteoblast-like cells (MG-63) on nano-grooved substrates

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Cell interactions with biomaterials are affected by surface topographic and chemical cues. Although it is well-known that nanometrical grooves/ridges structure modulates cellular spreading, elongation, and alignment, the combinational influence of surface topographic and chemical cues is not well studied. In this study, nano-textured silicon substrata with parallel ridges of 90, 250, or 500 nm wide, separated by grooves with equal width, were fabricated by electron beam lithography and dry etching techniques. Osteoblast-like cells, MG-63, were cultured on the patterned substrata with or without pre-adsorption of fibronectin. The cell morphology was imaged by scanning electron microscopy, and analyzed by image software. We found that FN coating initially modulated cellular spreading, length, and orientation on all types of grooved surfaces. However, after 24 h of culture, the cell morphology was not affected by FN coating on the 250-nm and 500-nm surfaces, while FN decreased cell alignment on the 90-nm surfaces. Our results suggest that surface chemical cues influence the initial cell-substratum contact, while the long-term cellular morphology is dictated by surface topographic cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Nakamura, T. Nishida, Cornea 18, 686 (1999). doi:10.1097/00003226-199911000-00011

    Article  PubMed  CAS  Google Scholar 

  2. D.K. Olivero, L.T. Furcht, Invest. Ophthalmol. Vis. Sci. 34, 2825 (1993)

    PubMed  CAS  Google Scholar 

  3. G.R. Martin, R. Timpl, Annu. Rev. Cell Biol. 3, 57 (1987). doi:10.1146/annurev.cb.03.110187.000421

    Article  PubMed  CAS  Google Scholar 

  4. D. Gospodarowicz, G. Greenburg, J.M. Foidart, N. Savion, J. Cell Physiol. 107, 171 (1981). doi:10.1002/jcp.1041070203

    Article  PubMed  CAS  Google Scholar 

  5. G.A. Abrams, S.L. Goodman, P.F. Nealey, M. Franco, C.J. Murphy, Cell Tissue Res. 299, 39 (2000). doi:10.1007/s004410050004

    Article  PubMed  CAS  Google Scholar 

  6. R.O. Hynes, Cell 69, 11 (1992). doi:10.1016/0092-8674(92)90115-S

    Article  PubMed  CAS  Google Scholar 

  7. J.G. Steele, B.A. Dalton, G. Johnson, P.A. Underwood, Biomaterials 16, 1057 (1995). doi:10.1016/0142-9612(95)98901-P

    Article  PubMed  CAS  Google Scholar 

  8. J.G. Steele, G. Johnson, C. Mcfarland, B.A. Dalton, T.R. Gengenbach, R.C. Chatelier, P.A. Underwood, H.J. Griesser, J. Biomater. Sci. Polym. Ed. 6, 511 (1994). doi:10.1163/156856294X00473

    Article  PubMed  CAS  Google Scholar 

  9. B. Geiger, A. Bershadsky, R. Pankov, K.M. Yamada, Nat. Rev. 2, 793 (2001)

    Article  CAS  Google Scholar 

  10. V. Petit, J.P. Thiery, Biol. Cell 92, 477 (2000). doi:10.1016/S0248-4900(00)01101-1

    Article  PubMed  CAS  Google Scholar 

  11. P. Clark, P. Connolly, A.S. Curtis, J.A. Dow, C.D. Wilkinson, Development 108, 635 (1990)

    PubMed  CAS  Google Scholar 

  12. S.-T. Li, in The biomedical engineering handbook, ed. by J.D. Bronzino (CRC Press Inc, Boca Raton, FL, 1995), p. 627

    Google Scholar 

  13. N. Matsumoto, S. Horibe, N. Nakamura, T. Senda, K. Shino, T. Ochi, Arch. Orthop. Trauma Surg. 117, 215 (1998). doi:10.1007/s004020050232

    Article  PubMed  CAS  Google Scholar 

  14. P. Weiss, Growth 5(suppl), 163 (1941)

    CAS  Google Scholar 

  15. A.S.G. Curtis, C.D. Wilkinson, J. Biomater. Sci. Polym. Ed. 9, 1313 (1998). doi:10.1163/156856298X00415

    Article  PubMed  CAS  Google Scholar 

  16. P. Clark, P. Connolly, A.S. Curtis, J.A. Dow, C.D. Wilkinson, Development 99, 439 (1987)

    PubMed  CAS  Google Scholar 

  17. D.M. Brunette, Exp. Cell Res. 167, 203 (1986). doi:10.1016/0014-4827(86)90217-X

    Article  PubMed  CAS  Google Scholar 

  18. A.I. Teixeira, P.F. Nealey, C.J. Murphy, J. Biomed. Mater. Res. A 71, 369 (2004). doi:10.1002/jbm.a.30089

    Article  PubMed  CAS  Google Scholar 

  19. B. Wojciak-Stothard, A. Curtis, W. Monaghan, K. MacDonald, C. Wilkinson, Exp. Cell Res. 223, 426 (1996). doi:10.1006/excr.1996.0098

    Article  PubMed  CAS  Google Scholar 

  20. A.I. Teixeira, G.A. Abrams, P.J. Bertics, C.J. Murphy, P.F. Nealey, J. Cell Sci. 116, 1881 (2003). doi:10.1242/jcs.00383

    Article  PubMed  CAS  Google Scholar 

  21. J.Y. Yang, Y.C. Ting, J.Y. Lai, H.L. Liu, H.W. Fang, W.B. Tsai (2008) J. Biomed. Mater. Res. A. doi:10.1002/jbm.a.32130

  22. R.O. Hynes, Sci. Am. 254, 42 (1986)

    Article  PubMed  ADS  CAS  Google Scholar 

  23. W. Kern, D.A. Puotinen, RCA Rev 31, 187 (1970)

    CAS  Google Scholar 

  24. W.B. Tsai, T.A. Horbett, J. Biomater. Sci. Polym. Ed. 10, 163 (1999). doi:10.1163/156856299X00117

    Article  PubMed  CAS  Google Scholar 

  25. M.J. Dalby, M.O. Riehle, S.J. Yarwood, C.D. Wilkinson, A.S. Curtis, Exp. Cell Res. 284, 274 (2003). doi:10.1016/S0014-4827(02)00053-8

    Article  PubMed  CAS  Google Scholar 

  26. A.S.G. Curtis, in Biomechanics and cells, ed. by F. Fyall, A.J. El (Cambridge University Press, Cambridge, 1994), p. 121

    Google Scholar 

  27. G.A. Dunn, A.F. Brown, J. Cell Sci. 83, 313 (1986)

    PubMed  CAS  Google Scholar 

  28. C.D.W. Wilkinson, M. Riehle, M. Wood, J. Gallagher, A.S.G. Curtis, Mater. Sci. Eng. C 19, 263 (2002)

    Article  Google Scholar 

  29. E.T. den Braber, J.E. de Ruijter, L.A. Ginsel, A.F. von Recum, J.A. Jansen, Biomaterials 17, 2037 (1996). doi:10.1016/0142-9612(96)00032-4

    Article  Google Scholar 

  30. X.F. Walboomers, W. Monaghan, A.S. Curtis, J.A. Jansen, J. Biomed. Mater. Res. 46, 212 (1999). doi :10.1002/(SICI)1097-4636(199908)46:2<212::AID-JBM10>3.0.CO;2-Y

    Article  PubMed  CAS  Google Scholar 

  31. B. Wojciak-Stothard, A.S. Curtis, W. Monaghan, M. McGrath, I. Sommer, C.D. Wilkinson, Cell Motil. Cytoskeleton 31, 147 (1995). doi:10.1002/cm.970310207

    Article  PubMed  CAS  Google Scholar 

  32. N.Q. Balaban, U.S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, B. Geiger, Nat. Cell Biol. 3, 466 (2001). doi:10.1038/35074532

    Article  PubMed  CAS  Google Scholar 

  33. X.F. Walboomers, L.A. Ginsel, J.A. Jansen, J. Biomed. Mater. Res. 51, 529 (2000). doi :10.1002/1097-4636(20000905)51:3<529::AID-JBM30>3.0.CO;2-R

    Article  PubMed  CAS  Google Scholar 

  34. P.T. Ohara, R.C. Buck, Exp. Cell Res. 121, 235 (1979). doi:10.1016/0014-4827(79)90002-8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge financial support from National Science Council, Taiwan (93-2214-E-002-035). The authors also thank Ms Chia-Hua Lin for manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Bor Tsai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, WB., Ting, YC., Yang, JY. et al. Fibronectin modulates the morphology of osteoblast-like cells (MG-63) on nano-grooved substrates. J Mater Sci: Mater Med 20, 1367–1378 (2009). https://doi.org/10.1007/s10856-008-3687-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3687-8

Keywords

Navigation