Skip to main content

Advertisement

Log in

Injectable biomaterials for minimally invasive orthopedic treatments

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Biodegradable and injectable hydroxy terminated-poly propylene fumarate (HT-PPF) bone cement was developed. The injectable formulation consisting HT-PPF and comonomer, n-vinyl pyrrolidone, calcium phosphate filler, free radical catalyst, accelerator and radiopaque agent sets rapidly to hard mass with low exothermic temperature. The candidate bone cement attains mechanical strength more than the required compressive strength of 5 MPa and compressive modulus 50 MPa. The candidate bone cement resin elicits cell adhesion and cytoplasmic spreading of osteoblast cells. The cured bone cement does not induce intracutaneous irritation and skin sensitization. The candidate bone cement is tissue compatible without eliciting any adverse tissue reactions. The candidate bone cement is osteoconductive and inductive and allow osteointegration and bone remodeling. HT-PPF bone cement is candidate bone cement for minimally invasive radiological procedures for the treatment of bone diseases and spinal compression fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. U.S. Patent 5,545,460

  2. U.S. Patent 5,543,182

  3. U.S. Patent 5,435,645

  4. U.S. Patent 5,336,699

  5. US Patent 5,049,157

  6. U.S. Patent 4,963,151

  7. S.R. Goldring, A.L. Schiller, M. Roelke, J. Bone Joint Surg. 65A, 575 (1983)

    Google Scholar 

  8. F.W. Recling, W.L. Dillon, J. Bone Joint Surg 59A, 80 (1977)

    Google Scholar 

  9. J.A. Dipisa, G.S. Sih, A.T. Berman, Clin. Orthop. Relat. Res. 121, 95 (1976)

    PubMed  Google Scholar 

  10. C.M. Schenfeld, G.J. Conrad, E.P. Latenschlager, J. Biomed. Mater. Res. 13, 135 (1979). doi:10.1002/jbm.820130114

    Article  Google Scholar 

  11. MedPro (2000) p. 204

  12. Paula Read (ed) (2000) Biomedical Materials 2000 International Newsletters, January, p. 2

  13. N. Ashammakhi, P. Rokkanen, Biomaterials 18, 3 (1997). doi:10.1016/S0142-9612(96)00107-X

    Article  PubMed  CAS  Google Scholar 

  14. P.J. Osther, P. Gjode, B.B. Mortensen, J. Bartholin, F. Gottrup, Br. J. Surg. 82, 1080 (1995). doi:10.1002/bjs.1800820824

    Article  PubMed  CAS  Google Scholar 

  15. E. Wintermantel, J. Mayer, J. Blum, K.-L. Eckert, P. Lüscher, M. Mathey, Biomaterials 17, 83 (1996). doi:10.1016/0142-9612(96)85753-X

    Article  PubMed  CAS  Google Scholar 

  16. N. Isogai, W. Landis, T.H. Kim, J. Bone Joint Surg. 81A(3), 306 (1999)

    Google Scholar 

  17. R. Langer, Nature 392(Suppl), 5 (1998)

    PubMed  CAS  Google Scholar 

  18. H. Winet, J.O. Hollinge, J. Biomed. Mater. Res. 27, 667 (1993). doi:10.1002/jbm.820270514

    Article  PubMed  CAS  Google Scholar 

  19. S.L. Ishaug, G.M. Crane, M.J. Miller, A.W. Yasko, M.J. Yaszemski, A.G. Mikos, J. Biomed. Mater. Res. A36, 17 (1997). doi:10.1002/(SICI)1097-4636(199707)36:1<17::AID-JBM3>3.0.CO;2-O

    Article  CAS  Google Scholar 

  20. M. Dauner, H. Planck, L. Caramaro, Y. Missirlis, E. Panagiotopoulo, J. Mater. Sci.: Mater. Med. 9, 173 (1998). doi:10.1023/A:1008823804460

    Article  CAS  Google Scholar 

  21. M. Jayabalan, V. Thomas, P.K. Sreelatha, Biomed. Mater. Eng. 10, 57 (2000)

    PubMed  CAS  Google Scholar 

  22. D. Celin, V. Thomas, M. Jayabalan, Indian J. Eng. Mater. Sci. 7, 160 (2000)

    CAS  Google Scholar 

  23. M. Jayabalan, V. Thomas, P.N. Rajesh, Biomaterials 22, 2749 (2001). doi:10.1016/S0142-9612(01)00018-7

    Article  PubMed  CAS  Google Scholar 

  24. V. Thomas, M. Jayabalan (2008) J. Biomed. Mater. Res. A, Online 22, April, 2008

  25. J.E. Sanderson (1988) U.S. Patent 4,722,948, 1–14

    Google Scholar 

  26. T.N. Gerhart, W.C. Hayes (1989) US Patent 4,843,112, 1–16

  27. A.J. Domb et al. (1989) U.S. Patent 4,888,413, 1–32

  28. M.J. Yazemski, in Biomaterials for Drug and Cell Delivery, ed. by A.G. Mikos (MRSI, Pittsburgh, 1994), p. 251

    Google Scholar 

  29. S.J. Peter, M.J. Yaszemski, L.J. Suggs, R.G. Payne, P.S. Engel, A.G. Mikos, J. Biomater. Sci. Polym. Ed. 8, 893 (1997). doi:10.1163/156856297X00074

    Article  PubMed  CAS  Google Scholar 

  30. M. Jayabalan, V. Thomas, P.K. Sreelatha, Biomed. Mater. Eng.: Int. J. 10, 57 (2000)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, Sree Chitra Tirunal Institute for Medical sciences and Technology and Head, Biomedical Technology Wing, SCTIMST, Trivandrum, for providing the support and facilities. Technical assistance by Dr. V. S. Hari Krishnan, Dr. Mira Mohanty and Dr. P. V. Mohanan for the biological evaluation is gratefully acknowledged. The author (M.J.) acknowledge the financial support of Department of Science and Technology, New Delhi, Government of India (DST No. SR/SO/HS-50/2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jayabalan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayabalan, M., Shalumon, K.T. & Mitha, M.K. Injectable biomaterials for minimally invasive orthopedic treatments. J Mater Sci: Mater Med 20, 1379–1387 (2009). https://doi.org/10.1007/s10856-008-3683-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3683-z

Keywords

Navigation