Advertisement

Injectable biomaterials for minimally invasive orthopedic treatments

  • M. Jayabalan
  • K. T. Shalumon
  • M. K. Mitha
Article

Abstract

Biodegradable and injectable hydroxy terminated-poly propylene fumarate (HT-PPF) bone cement was developed. The injectable formulation consisting HT-PPF and comonomer, n-vinyl pyrrolidone, calcium phosphate filler, free radical catalyst, accelerator and radiopaque agent sets rapidly to hard mass with low exothermic temperature. The candidate bone cement attains mechanical strength more than the required compressive strength of 5 MPa and compressive modulus 50 MPa. The candidate bone cement resin elicits cell adhesion and cytoplasmic spreading of osteoblast cells. The cured bone cement does not induce intracutaneous irritation and skin sensitization. The candidate bone cement is tissue compatible without eliciting any adverse tissue reactions. The candidate bone cement is osteoconductive and inductive and allow osteointegration and bone remodeling. HT-PPF bone cement is candidate bone cement for minimally invasive radiological procedures for the treatment of bone diseases and spinal compression fractures.

Keywords

PMMA Bone Cement Fumaric Acid Calcium Phosphate Cement Demineralised Bone Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors are grateful to the Director, Sree Chitra Tirunal Institute for Medical sciences and Technology and Head, Biomedical Technology Wing, SCTIMST, Trivandrum, for providing the support and facilities. Technical assistance by Dr. V. S. Hari Krishnan, Dr. Mira Mohanty and Dr. P. V. Mohanan for the biological evaluation is gratefully acknowledged. The author (M.J.) acknowledge the financial support of Department of Science and Technology, New Delhi, Government of India (DST No. SR/SO/HS-50/2003).

References

  1. 1.
    U.S. Patent 5,545,460Google Scholar
  2. 2.
    U.S. Patent 5,543,182Google Scholar
  3. 3.
    U.S. Patent 5,435,645Google Scholar
  4. 4.
    U.S. Patent 5,336,699Google Scholar
  5. 5.
    US Patent 5,049,157Google Scholar
  6. 6.
    U.S. Patent 4,963,151Google Scholar
  7. 7.
    S.R. Goldring, A.L. Schiller, M. Roelke, J. Bone Joint Surg. 65A, 575 (1983)Google Scholar
  8. 8.
    F.W. Recling, W.L. Dillon, J. Bone Joint Surg 59A, 80 (1977)Google Scholar
  9. 9.
    J.A. Dipisa, G.S. Sih, A.T. Berman, Clin. Orthop. Relat. Res. 121, 95 (1976)PubMedGoogle Scholar
  10. 10.
    C.M. Schenfeld, G.J. Conrad, E.P. Latenschlager, J. Biomed. Mater. Res. 13, 135 (1979). doi: 10.1002/jbm.820130114 CrossRefGoogle Scholar
  11. 11.
    MedPro (2000) p. 204Google Scholar
  12. 12.
    Paula Read (ed) (2000) Biomedical Materials 2000 International Newsletters, January, p. 2Google Scholar
  13. 13.
    N. Ashammakhi, P. Rokkanen, Biomaterials 18, 3 (1997). doi: 10.1016/S0142-9612(96)00107-X PubMedCrossRefGoogle Scholar
  14. 14.
    P.J. Osther, P. Gjode, B.B. Mortensen, J. Bartholin, F. Gottrup, Br. J. Surg. 82, 1080 (1995). doi: 10.1002/bjs.1800820824 PubMedCrossRefGoogle Scholar
  15. 15.
    E. Wintermantel, J. Mayer, J. Blum, K.-L. Eckert, P. Lüscher, M. Mathey, Biomaterials 17, 83 (1996). doi: 10.1016/0142-9612(96)85753-X PubMedCrossRefGoogle Scholar
  16. 16.
    N. Isogai, W. Landis, T.H. Kim, J. Bone Joint Surg. 81A(3), 306 (1999)Google Scholar
  17. 17.
    R. Langer, Nature 392(Suppl), 5 (1998)PubMedGoogle Scholar
  18. 18.
    H. Winet, J.O. Hollinge, J. Biomed. Mater. Res. 27, 667 (1993). doi: 10.1002/jbm.820270514 PubMedCrossRefGoogle Scholar
  19. 19.
    S.L. Ishaug, G.M. Crane, M.J. Miller, A.W. Yasko, M.J. Yaszemski, A.G. Mikos, J. Biomed. Mater. Res. A36, 17 (1997). doi:10.1002/(SICI)1097-4636(199707)36:1<17::AID-JBM3>3.0.CO;2-OCrossRefGoogle Scholar
  20. 20.
    M. Dauner, H. Planck, L. Caramaro, Y. Missirlis, E. Panagiotopoulo, J. Mater. Sci.: Mater. Med. 9, 173 (1998). doi: 10.1023/A:1008823804460 CrossRefGoogle Scholar
  21. 21.
    M. Jayabalan, V. Thomas, P.K. Sreelatha, Biomed. Mater. Eng. 10, 57 (2000)PubMedGoogle Scholar
  22. 22.
    D. Celin, V. Thomas, M. Jayabalan, Indian J. Eng. Mater. Sci. 7, 160 (2000)Google Scholar
  23. 23.
    M. Jayabalan, V. Thomas, P.N. Rajesh, Biomaterials 22, 2749 (2001). doi: 10.1016/S0142-9612(01)00018-7 PubMedCrossRefGoogle Scholar
  24. 24.
    V. Thomas, M. Jayabalan (2008) J. Biomed. Mater. Res. A, Online 22, April, 2008Google Scholar
  25. 25.
    J.E. Sanderson (1988) U.S. Patent 4,722,948, 1–14Google Scholar
  26. 26.
    T.N. Gerhart, W.C. Hayes (1989) US Patent 4,843,112, 1–16Google Scholar
  27. 27.
    A.J. Domb et al. (1989) U.S. Patent 4,888,413, 1–32Google Scholar
  28. 28.
    M.J. Yazemski, in Biomaterials for Drug and Cell Delivery, ed. by A.G. Mikos (MRSI, Pittsburgh, 1994), p. 251Google Scholar
  29. 29.
    S.J. Peter, M.J. Yaszemski, L.J. Suggs, R.G. Payne, P.S. Engel, A.G. Mikos, J. Biomater. Sci. Polym. Ed. 8, 893 (1997). doi: 10.1163/156856297X00074 PubMedCrossRefGoogle Scholar
  30. 30.
    M. Jayabalan, V. Thomas, P.K. Sreelatha, Biomed. Mater. Eng.: Int. J. 10, 57 (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Polymer Division, Biomedical Technology WingSree Chitra Tirunal Institute for Medical Sciences and TechnologyThiruvanthapuramIndia

Personalised recommendations