Advertisement

Characterization of sintered titanium/hydroxyapatite biocomposite using FTIR spectroscopy

  • Hezhou Ye
  • Xing Yang Liu
  • Hanping Hong
Article

Abstract

Fourier transform infrared (FTIR) spectroscopy was employed to characterize the phase changes of hydroxyapatite (Ca10(PO4)6(OH)2, HA) in a titanium/HA biocomposite during sintering. The effects of sintering temperature and the presence of Ti on the decomposition of HA were examined. It was observed that pure HA was stable in argon atmosphere at temperatures up to 1,200°C, although the dehydroxylation of pure HA was promoted by the increase in sintering temperature. In the Ti/HA system, on the other hand, the presence of Ti accelerated dehydroxylation and the decomposition of HA was detected at a temperature as low as 800°C. Tetracalcium phosphate (Ca4P2O9, TTCP) and calcium oxide (CaO) were the dominant products of the decomposition, but no tricalcium phosphate (Ca3(PO4)2, TCP) was detected due to phosphorus diffusion and possible reactions during the thermal process. The main decomposed constituents of HA in Ti/HA system at high temperatures (≥1,200°C) would be CaO and amorphous phases.

Keywords

Sinter Temperature Calcium Phosphate Water Vapour Pressure Tricalcium Phosphate TTCP 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is supported by the Natural Science and Engineering Research Council of Canada. The valuable discussions and help from Prof. P.J Ragogna, Mr. Jason L. Dutton and Mr. Caleb Martin of the University of Western Ontario related to this research work are gratefully acknowledged.

References

  1. 1.
    L. Hong, H.C. Xu, K. de Groot, J. Biomed. Mater. Res. 26, 7 (1992). doi: 10.1002/jbm.820260103 PubMedCrossRefGoogle Scholar
  2. 2.
    J.T. Edwards, J.B. Brunski, H.W. Higuchi, J. Biomed. Mater. Res. 36, 454 (1997). doi:10.1002/(SICI)1097-4636(19970915)36:4<454::AID-JBM3>3.0.CO;2-DPubMedCrossRefGoogle Scholar
  3. 3.
    U. Ripamonti, J. Bone Joint Surg. 73A, 692 (1991)Google Scholar
  4. 4.
    J.H. Kuhne, R. Bartle, B. Frisch, Acta Orthop. Scand. 65(3), 246 (1994)PubMedCrossRefGoogle Scholar
  5. 5.
    J.C. Elliot, P.E. Machie, R.A. Yong, Science 180, 1055 (1973). doi: 10.1126/science.180.4090.1055 CrossRefADSGoogle Scholar
  6. 6.
    L.L. Hench, J. Am. Ceram. Soc. 81, 1705 (1998)Google Scholar
  7. 7.
    H. Aoki, Science and Medical Applications of Hydroxyapatite (Takayama, Tokyo, 1991), p. 137Google Scholar
  8. 8.
    K.S. Vecchio, X. Zhang, J.B. Massie, M. Wang, C.W. Kim, Acta Biomater. 3, 910 (2007). doi: 10.1016/j.actbio.2007.06.003 PubMedCrossRefGoogle Scholar
  9. 9.
    G. de With, H.J.A. Candijk, N. Hattu, K. Prijs, J. Mater. Sci. 16, 1592 (1981). doi: 10.1007/BF02396876 CrossRefADSGoogle Scholar
  10. 10.
    O. Prokopiev, I. Sevostianov, Mater. Sci. Eng. A 431, 218 (2006). doi: 10.1016/j.msea.2006.05.158 CrossRefGoogle Scholar
  11. 11.
    Y.C. Fung, Biomechanics: Mechanical Properties of Living tissues (Springer-Verlag, New York, 1993), p. 510Google Scholar
  12. 12.
    R.V. Noort, J. Mater. Sci. 22, 3801 (1987). doi: 10.1007/BF01133326 CrossRefADSGoogle Scholar
  13. 13.
    M. Long, H.J. Rack, Biomaterials 19, 1621 (1998). doi: 10.1016/S0142-9612(97)00146-4 PubMedCrossRefGoogle Scholar
  14. 14.
    A. Biship, C.Y. Lin, M. Navaratnam, R.D. Rawlings, H.B. Mcshane, J. Mater. Sci. Lett. 12, 1516 (1993)Google Scholar
  15. 15.
    C.L. Chu, J.C. Zhu, Z.D. Yin, S.D. Wang, Mater. Sci. Eng. A 271, 95 (1999). doi: 10.1016/S0921-5093(99)00152-5 CrossRefGoogle Scholar
  16. 16.
    C.L. Chu, J.C. Zhu, Z.D. Yin, P.H. Lin, Mater. Sci. Eng. A 316, 205 (2001). doi: 10.1016/S0921-5093(01)01239-4 CrossRefGoogle Scholar
  17. 17.
    C.L. Chu, J.C. Zhu, Z.D. Yin, P.H. Lin, Mater. Sci. Eng. A 348, 244 (2003). doi: 10.1016/S0921-5093(02)00738-4 CrossRefGoogle Scholar
  18. 18.
    C.Q. Ning, Y. Zhou, H.L. Wang, D.C. Jia, T.C. Lei, J. Mater. Sci. Lett. 19, 1243 (2000). doi: 10.1023/A:1006725529837 CrossRefGoogle Scholar
  19. 19.
    C.L. Chu, X.Y. Xue, J.C. Zhu, Z.D. Yin, J. Mater. Sci. Mater. Med. 17, 245 (2006). doi: 10.1007/s10856-006-7310-6 PubMedCrossRefGoogle Scholar
  20. 20.
    C.Q. Ning, Y. Zhou, Biomaterials 23, 2909 (2002). doi: 10.1016/S0142-9612(01)00419-7 PubMedCrossRefGoogle Scholar
  21. 21.
    J. Weng, X.G. Liu, X.D. Zhang, X.Y. Ji, J. Mater. Sci. Lett. 13, 159 (1994). doi: 10.1007/BF00278148 CrossRefGoogle Scholar
  22. 22.
    C.Q. Ning, Y. Zhou, Biomaterials 25, 3379 (2004). doi: 10.1016/j.biomaterials.2003.10.017 PubMedCrossRefGoogle Scholar
  23. 23.
    C. Popa, V. Simon, I. Vida-Simiti, G. Batin, V. Candea, S. Simon, J. Mater. Sci. Mater. Med. 16, 1165 (2005). doi: 10.1007/s10856-005-4724-5 PubMedCrossRefGoogle Scholar
  24. 24.
    A. Antonakos, E. Largokapis, T. Leventouri, Biomaterials 28, 3043 (2007). doi: 10.1016/j.biomaterials.2007.02.028 PubMedCrossRefGoogle Scholar
  25. 25.
    A. Jillavenkatesa, R.A. Condrate Sr, Spectrosc. Lett. 31, 1619 (1998). doi: 10.1080/00387019808007439 CrossRefADSGoogle Scholar
  26. 26.
    U. Posset, E. Locklin, R. Thull, W. Kiefer, J. Biomed. Mater. Res. 40, 640 (1998). doi:10.1002/(SICI)1097-4636(19980615)40:4<640::AID-JBM16>3.0.CO;2-JPubMedCrossRefGoogle Scholar
  27. 27.
    A. Rapacz-kmita, C. Paluszkiewicz, A. Slosarczyk, Z. Paszkiewicz, J. Mol. Struct. 744–47, 653 (2005). doi: 10.1016/j.molstruc.2004.11.070 CrossRefGoogle Scholar
  28. 28.
    H. Nishikawa, Mater. Lett. 50, 364 (2001). doi: 10.1016/S0167-577X(01)00318-4 CrossRefGoogle Scholar
  29. 29.
    K.A. Gross, C.C. Berndt, P. Stephens, R. Dinnebier, J. Mater. Sci. 33, 3985 (1998). doi: 10.1023/A:1004605014652 CrossRefGoogle Scholar
  30. 30.
    D.M. Liu, H.M. Chou, J.D. Wu, J. Mater. Sci. Mater. Med. 5, 147 (1994). doi: 10.1007/BF00053335 CrossRefGoogle Scholar
  31. 31.
    I. Rehman, W. Bonfield, J. Mater. Sci. Mater. Med. 8, 1 (1997). doi: 10.1023/A:1018570213546 PubMedCrossRefGoogle Scholar
  32. 32.
    M. Kukura, L.C. Bell, A.M. Posner, J.P. Quirk, J. Phys. Chem. 76, 900 (1972). doi: 10.1021/j100650a019 CrossRefGoogle Scholar
  33. 33.
    R.A. Nyquist, R.O. Rageli, Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts. Vol.4: Infrared Spectra of Inorganic Compounds (3800–45 cm 1) (Academic, San Diego, 1997), p. 207Google Scholar
  34. 34.
    G. Penel, G. Leroy, C. Rey, B. Sombert, J.P. Huvenne, E. Bres, J. Mater. Sci. 8, 271 (1997). doi: 10.1023/A:1018504126866 CrossRefGoogle Scholar
  35. 35.
    Y. Sargin, M. Kizilyalli, C. Telli, H. Guler, J. Eur. Ceram. Soc. 17, 963 (1997). doi: 10.1016/S0955-2219(96)00196-3 CrossRefGoogle Scholar
  36. 36.
    M.K. Gergs, H.A. Said, M. Donogol, H.A. Aly, Int. J. Mater. Sci. 2, 81 (2007)Google Scholar
  37. 37.
    S. Jalota, A.C. Tas, S.B. Bhaduri, J. Am. Ceram. Soc. 88, 3353 (2005). doi: 10.1111/j.1551-2916.2005.00623.x CrossRefGoogle Scholar
  38. 38.
    C.C. Ribeiro, I. Gibson, M.A. Barbosa, Biomaterials 27, 1749 (2006). doi: 10.1016/j.biomaterials.2005.09.043 PubMedCrossRefGoogle Scholar
  39. 39.
    B.O. Fowler, Inorg. Chem. 13, 194 (1974). doi: 10.1021/ic50131a039 CrossRefGoogle Scholar
  40. 40.
    T. Wang, A. Dorner-Reisel, Mater. Lett. 58, 3025 (2004). doi: 10.1016/j.matlet.2004.05.033 CrossRefGoogle Scholar
  41. 41.
    J. Cihlar, A. Buchal, M. Trunec, J. Mater. Sci. 34, 6121 (1999). doi: 10.1023/A:1004769820545 CrossRefGoogle Scholar
  42. 42.
    C. Liao, F. Lin, K. Chen, J. Sun, Biomaterials 20, 1807 (1999). doi: 10.1016/S0142-9612(99)00076-9 PubMedCrossRefGoogle Scholar
  43. 43.
    J. Zhou, X. Zhang, J. Chen, S. Zeng, K. de Groot, J. Mater. Sci. Mater. Med. 4, 83 (1993). doi: 10.1007/BF00122983 CrossRefGoogle Scholar
  44. 44.
    K.A. Gross, C.C. Berndt, J. Biomed. Mater. Res. 39, 580 (1998). doi:10.1002/(SICI)1097-4636(19980315)39:4<580::AID-JBM12>3.0.CO;2-BPubMedCrossRefGoogle Scholar
  45. 45.
    M.J. Filiaggi, R.M. Pilliar, N.A. Coombs, J. Biomed. Mater. Res. 27, 191 (1993). doi: 10.1002/jbm.820270208 PubMedCrossRefGoogle Scholar
  46. 46.
    H. Ji, P.M. Marquis, Biomaterials 14, 64 (1993). doi: 10.1016/0142-9612(93)90077-F PubMedCrossRefGoogle Scholar
  47. 47.
    E.R. Kreidler, F.A. Hummel, Inorg. Chem. 6, 884 (1967). doi: 10.1021/ic50051a007 CrossRefGoogle Scholar
  48. 48.
    J. Chen, W. Tong, C. Yang, J. Feng, X. Zhang, J. Biomed. Mater. Res. 34, 15 (1997). doi:10.1002/(SICI)1097-4636(199701)34:1<15::AID-JBM3>3.0.CO;2-QPubMedCrossRefGoogle Scholar

Copyright information

© © Her Majesty the Queen in Right of Canada 2008

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of Western OntarioLondonCanada
  2. 2.Industrial Materials InstituteNational Research Council of CanadaLondonCanada

Personalised recommendations