Skip to main content

Advertisement

Log in

Characterization of sintered titanium/hydroxyapatite biocomposite using FTIR spectroscopy

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Fourier transform infrared (FTIR) spectroscopy was employed to characterize the phase changes of hydroxyapatite (Ca10(PO4)6(OH)2, HA) in a titanium/HA biocomposite during sintering. The effects of sintering temperature and the presence of Ti on the decomposition of HA were examined. It was observed that pure HA was stable in argon atmosphere at temperatures up to 1,200°C, although the dehydroxylation of pure HA was promoted by the increase in sintering temperature. In the Ti/HA system, on the other hand, the presence of Ti accelerated dehydroxylation and the decomposition of HA was detected at a temperature as low as 800°C. Tetracalcium phosphate (Ca4P2O9, TTCP) and calcium oxide (CaO) were the dominant products of the decomposition, but no tricalcium phosphate (Ca3(PO4)2, TCP) was detected due to phosphorus diffusion and possible reactions during the thermal process. The main decomposed constituents of HA in Ti/HA system at high temperatures (≥1,200°C) would be CaO and amorphous phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Hong, H.C. Xu, K. de Groot, J. Biomed. Mater. Res. 26, 7 (1992). doi:10.1002/jbm.820260103

    Article  PubMed  CAS  Google Scholar 

  2. J.T. Edwards, J.B. Brunski, H.W. Higuchi, J. Biomed. Mater. Res. 36, 454 (1997). doi:10.1002/(SICI)1097-4636(19970915)36:4<454::AID-JBM3>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  3. U. Ripamonti, J. Bone Joint Surg. 73A, 692 (1991)

    Google Scholar 

  4. J.H. Kuhne, R. Bartle, B. Frisch, Acta Orthop. Scand. 65(3), 246 (1994)

    Article  PubMed  CAS  Google Scholar 

  5. J.C. Elliot, P.E. Machie, R.A. Yong, Science 180, 1055 (1973). doi:10.1126/science.180.4090.1055

    Article  ADS  Google Scholar 

  6. L.L. Hench, J. Am. Ceram. Soc. 81, 1705 (1998)

    CAS  Google Scholar 

  7. H. Aoki, Science and Medical Applications of Hydroxyapatite (Takayama, Tokyo, 1991), p. 137

    Google Scholar 

  8. K.S. Vecchio, X. Zhang, J.B. Massie, M. Wang, C.W. Kim, Acta Biomater. 3, 910 (2007). doi:10.1016/j.actbio.2007.06.003

    Article  PubMed  CAS  Google Scholar 

  9. G. de With, H.J.A. Candijk, N. Hattu, K. Prijs, J. Mater. Sci. 16, 1592 (1981). doi:10.1007/BF02396876

    Article  ADS  Google Scholar 

  10. O. Prokopiev, I. Sevostianov, Mater. Sci. Eng. A 431, 218 (2006). doi:10.1016/j.msea.2006.05.158

    Article  CAS  Google Scholar 

  11. Y.C. Fung, Biomechanics: Mechanical Properties of Living tissues (Springer-Verlag, New York, 1993), p. 510

    Google Scholar 

  12. R.V. Noort, J. Mater. Sci. 22, 3801 (1987). doi:10.1007/BF01133326

    Article  ADS  Google Scholar 

  13. M. Long, H.J. Rack, Biomaterials 19, 1621 (1998). doi:10.1016/S0142-9612(97)00146-4

    Article  PubMed  CAS  Google Scholar 

  14. A. Biship, C.Y. Lin, M. Navaratnam, R.D. Rawlings, H.B. Mcshane, J. Mater. Sci. Lett. 12, 1516 (1993)

    Google Scholar 

  15. C.L. Chu, J.C. Zhu, Z.D. Yin, S.D. Wang, Mater. Sci. Eng. A 271, 95 (1999). doi:10.1016/S0921-5093(99)00152-5

    Article  Google Scholar 

  16. C.L. Chu, J.C. Zhu, Z.D. Yin, P.H. Lin, Mater. Sci. Eng. A 316, 205 (2001). doi:10.1016/S0921-5093(01)01239-4

    Article  Google Scholar 

  17. C.L. Chu, J.C. Zhu, Z.D. Yin, P.H. Lin, Mater. Sci. Eng. A 348, 244 (2003). doi:10.1016/S0921-5093(02)00738-4

    Article  CAS  Google Scholar 

  18. C.Q. Ning, Y. Zhou, H.L. Wang, D.C. Jia, T.C. Lei, J. Mater. Sci. Lett. 19, 1243 (2000). doi:10.1023/A:1006725529837

    Article  CAS  Google Scholar 

  19. C.L. Chu, X.Y. Xue, J.C. Zhu, Z.D. Yin, J. Mater. Sci. Mater. Med. 17, 245 (2006). doi:10.1007/s10856-006-7310-6

    Article  PubMed  CAS  Google Scholar 

  20. C.Q. Ning, Y. Zhou, Biomaterials 23, 2909 (2002). doi:10.1016/S0142-9612(01)00419-7

    Article  PubMed  CAS  Google Scholar 

  21. J. Weng, X.G. Liu, X.D. Zhang, X.Y. Ji, J. Mater. Sci. Lett. 13, 159 (1994). doi:10.1007/BF00278148

    Article  CAS  Google Scholar 

  22. C.Q. Ning, Y. Zhou, Biomaterials 25, 3379 (2004). doi:10.1016/j.biomaterials.2003.10.017

    Article  PubMed  CAS  Google Scholar 

  23. C. Popa, V. Simon, I. Vida-Simiti, G. Batin, V. Candea, S. Simon, J. Mater. Sci. Mater. Med. 16, 1165 (2005). doi:10.1007/s10856-005-4724-5

    Article  PubMed  CAS  Google Scholar 

  24. A. Antonakos, E. Largokapis, T. Leventouri, Biomaterials 28, 3043 (2007). doi:10.1016/j.biomaterials.2007.02.028

    Article  PubMed  CAS  Google Scholar 

  25. A. Jillavenkatesa, R.A. Condrate Sr, Spectrosc. Lett. 31, 1619 (1998). doi:10.1080/00387019808007439

    Article  CAS  ADS  Google Scholar 

  26. U. Posset, E. Locklin, R. Thull, W. Kiefer, J. Biomed. Mater. Res. 40, 640 (1998). doi:10.1002/(SICI)1097-4636(19980615)40:4<640::AID-JBM16>3.0.CO;2-J

    Article  PubMed  CAS  Google Scholar 

  27. A. Rapacz-kmita, C. Paluszkiewicz, A. Slosarczyk, Z. Paszkiewicz, J. Mol. Struct. 744–47, 653 (2005). doi:10.1016/j.molstruc.2004.11.070

    Article  CAS  Google Scholar 

  28. H. Nishikawa, Mater. Lett. 50, 364 (2001). doi:10.1016/S0167-577X(01)00318-4

    Article  CAS  Google Scholar 

  29. K.A. Gross, C.C. Berndt, P. Stephens, R. Dinnebier, J. Mater. Sci. 33, 3985 (1998). doi:10.1023/A:1004605014652

    Article  CAS  Google Scholar 

  30. D.M. Liu, H.M. Chou, J.D. Wu, J. Mater. Sci. Mater. Med. 5, 147 (1994). doi:10.1007/BF00053335

    Article  Google Scholar 

  31. I. Rehman, W. Bonfield, J. Mater. Sci. Mater. Med. 8, 1 (1997). doi:10.1023/A:1018570213546

    Article  PubMed  CAS  Google Scholar 

  32. M. Kukura, L.C. Bell, A.M. Posner, J.P. Quirk, J. Phys. Chem. 76, 900 (1972). doi:10.1021/j100650a019

    Article  CAS  Google Scholar 

  33. R.A. Nyquist, R.O. Rageli, Handbook of Infrared and Raman Spectra of Inorganic Compounds and Organic Salts. Vol.4: Infrared Spectra of Inorganic Compounds (3800–45 cm 1) (Academic, San Diego, 1997), p. 207

    Google Scholar 

  34. G. Penel, G. Leroy, C. Rey, B. Sombert, J.P. Huvenne, E. Bres, J. Mater. Sci. 8, 271 (1997). doi:10.1023/A:1018504126866

    Article  CAS  Google Scholar 

  35. Y. Sargin, M. Kizilyalli, C. Telli, H. Guler, J. Eur. Ceram. Soc. 17, 963 (1997). doi:10.1016/S0955-2219(96)00196-3

    Article  CAS  Google Scholar 

  36. M.K. Gergs, H.A. Said, M. Donogol, H.A. Aly, Int. J. Mater. Sci. 2, 81 (2007)

    Google Scholar 

  37. S. Jalota, A.C. Tas, S.B. Bhaduri, J. Am. Ceram. Soc. 88, 3353 (2005). doi:10.1111/j.1551-2916.2005.00623.x

    Article  CAS  Google Scholar 

  38. C.C. Ribeiro, I. Gibson, M.A. Barbosa, Biomaterials 27, 1749 (2006). doi:10.1016/j.biomaterials.2005.09.043

    Article  PubMed  CAS  Google Scholar 

  39. B.O. Fowler, Inorg. Chem. 13, 194 (1974). doi:10.1021/ic50131a039

    Article  CAS  Google Scholar 

  40. T. Wang, A. Dorner-Reisel, Mater. Lett. 58, 3025 (2004). doi:10.1016/j.matlet.2004.05.033

    Article  CAS  Google Scholar 

  41. J. Cihlar, A. Buchal, M. Trunec, J. Mater. Sci. 34, 6121 (1999). doi:10.1023/A:1004769820545

    Article  CAS  Google Scholar 

  42. C. Liao, F. Lin, K. Chen, J. Sun, Biomaterials 20, 1807 (1999). doi:10.1016/S0142-9612(99)00076-9

    Article  PubMed  CAS  Google Scholar 

  43. J. Zhou, X. Zhang, J. Chen, S. Zeng, K. de Groot, J. Mater. Sci. Mater. Med. 4, 83 (1993). doi:10.1007/BF00122983

    Article  CAS  Google Scholar 

  44. K.A. Gross, C.C. Berndt, J. Biomed. Mater. Res. 39, 580 (1998). doi:10.1002/(SICI)1097-4636(19980315)39:4<580::AID-JBM12>3.0.CO;2-B

    Article  PubMed  CAS  Google Scholar 

  45. M.J. Filiaggi, R.M. Pilliar, N.A. Coombs, J. Biomed. Mater. Res. 27, 191 (1993). doi:10.1002/jbm.820270208

    Article  PubMed  CAS  Google Scholar 

  46. H. Ji, P.M. Marquis, Biomaterials 14, 64 (1993). doi:10.1016/0142-9612(93)90077-F

    Article  PubMed  CAS  Google Scholar 

  47. E.R. Kreidler, F.A. Hummel, Inorg. Chem. 6, 884 (1967). doi:10.1021/ic50051a007

    Article  CAS  Google Scholar 

  48. J. Chen, W. Tong, C. Yang, J. Feng, X. Zhang, J. Biomed. Mater. Res. 34, 15 (1997). doi:10.1002/(SICI)1097-4636(199701)34:1<15::AID-JBM3>3.0.CO;2-Q

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science and Engineering Research Council of Canada. The valuable discussions and help from Prof. P.J Ragogna, Mr. Jason L. Dutton and Mr. Caleb Martin of the University of Western Ontario related to this research work are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hezhou Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, H., Liu, X.Y. & Hong, H. Characterization of sintered titanium/hydroxyapatite biocomposite using FTIR spectroscopy. J Mater Sci: Mater Med 20, 843–850 (2009). https://doi.org/10.1007/s10856-008-3647-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3647-3

Keywords

Navigation