Evaluation of a multi-layer microbraided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration

  • Ming-Chin Lu
  • Yen-Ting Huang
  • Jia-Horng Lin
  • Chun-Hsu Yao
  • Ching-Wen Lou
  • Chin-Chuan Tsai
  • Yueh-Sheng Chen


We evaluated peripheral nerve regeneration using a biodegradable multi-layer microbraided polylactic acid (PLA) fiber-reinforced conduit. Biodegradability of the PLA conduit and its effectiveness as a guidance channel were examined as it was used to repair a 10 mm gap in the rat sciatic nerve. As a result, tube fragmentation was not obvious and successful regeneration through the gap occurred in all the conduits at 8 weeks after operation. These results indicate the superiority of the PLA materials and suggest that the multi-layer microbraided PLA fiber-reinforced conduits provide a promising tool for neuro-regeneration.


Sciatic Nerve Polylactic Acid Nerve Conductive Velocity Peripheral Nerve Regeneration Nerve Stump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank National Science Council of the Republic of China (Contract No. 96-2628-E-039-011-MY3, 96-2622-E-039-001-CC3) for financially supporting this research. Dr. Tsai-Chung Lee is appreciated for her assistance in analyzing the data.


  1. 1.
    Y.S. Chen, C.L. Hsieh, C.C. Tsai, T.H. Chen, W.C. Cheng, C.L. Hu, C.H. Yao, Biomaterials 21, 1541 (2000)PubMedCrossRefGoogle Scholar
  2. 2.
    Y.S. Chen, J.Y. Chang, C.Y. Cheng, F.J. Tsai, C.H. Yao, B.S. Liu, Biomaterials 26, 3911 (2005)PubMedCrossRefGoogle Scholar
  3. 3.
    J.Y. Chang, J.H. Lin, C.H. Yao, J.H. Chen, T.Y. Lai, Y.S. Chen, Macromol. Biosci. 7, 500 (2007)PubMedCrossRefGoogle Scholar
  4. 4.
    L.N. Novikova, J. Pettersson, M. Brohlin, M. Wiberg, L.N. Novikov, Biomaterials 29, 1198 (2008)PubMedCrossRefGoogle Scholar
  5. 5.
    C.A. Mills, E. Martinez, A. Errachid, E. Engel, M. Funes, C. Moormann, T. Wahlbrink, G. Gomila, J. Planell, J. Samitier, J. Nanosci. Nanotechnol. 7, 4588 (2007)PubMedGoogle Scholar
  6. 6.
    Y. Gong, Z. Ma, Q. Zhou, J. Li, C. Gao, J. Shen, J. Biomater. Sci. Polym. Ed. 19, 207 (2008)PubMedCrossRefGoogle Scholar
  7. 7.
    J.S. Dines, S. Fealy, H.G. Potter, R.F. Warren, Arthroscopy 24, 62 (2008)PubMedCrossRefGoogle Scholar
  8. 8.
    T. Fukushima, M. Kawaguchi, T. Hayakawa, S. Takeda, Y. Inoue, J. Ohno, K. Taniguchi, Dent. Mater. J. 26, 854 (2007)PubMedCrossRefGoogle Scholar
  9. 9.
    H. Schliephake, H.A. Weich, C. Dullin, R. Gruber, S. Frahse, Biomaterials 29, 103 (2008)PubMedCrossRefGoogle Scholar
  10. 10.
    J.H. Lin, I.S. Tsai, W.H. Hsing, J. Textile Inst. 89, 266 (1998)CrossRefGoogle Scholar
  11. 11.
    J.H. Lin, C.W. Chang, C.W. Lou, W.H. Hsing, Tex. Res. J. 74, 480 (2004)CrossRefGoogle Scholar
  12. 12.
    C.W. Lou, C.H. Yao, Y.S. Chen, T.C. Hsieh, W.H. Hsing, J.H. Lin, Text. Res. J. 78, 958 (2008)CrossRefGoogle Scholar
  13. 13.
    C.W. Lou, C.W. Lin, Y.S. Chen, C.H. Yao, Z.S. Lin, C.Y. Chao, J.H. Lin, Text. Res. J. 78, 248 (2008)CrossRefGoogle Scholar
  14. 14.
    X.J. Tong, K.I. Hirai, H. Shimada, Y. Mizutani, T. Izumi, N. Toda, P. Yu, Brain Res. 663, 155 (1994)PubMedCrossRefGoogle Scholar
  15. 15.
    A. Derby, V.W. Engleman, G.E. Frierdich, G. Neises, S.R. Rapp, D.G. Roufa, Exp. Neuro. 119, 176 (1993)CrossRefGoogle Scholar
  16. 16.
    L.R. Williams, F.M. Longo, H.C. Powell, G. Lundborg, S. Varon, J. Comp. Neurol. 218, 460 (1983)PubMedCrossRefGoogle Scholar
  17. 17.
    E.W. Henry, T.H. Chiu, E. Nyilas, T.M. Brushart, P. Dikkes, R.L. Sidman, Exp. Neuro. 90, 652 (1985)CrossRefGoogle Scholar
  18. 18.
    G. Ciardelli, V. Chiono, Macromol. Biosci. 6, 13 (2006)PubMedCrossRefGoogle Scholar
  19. 19.
    A.S. Hoffman, Adv. Drug Deliv. Rev. 54, 3 (2002)PubMedCrossRefGoogle Scholar
  20. 20.
    H.W. Sung, D.M. Huang, W.H. Chang, R.N. Huang, J.C. Hsu, J. Biomed. Mater. Res. 46, 520 (1999)PubMedCrossRefGoogle Scholar
  21. 21.
    J. Li, R. Shi, J. Neurosci. Methods 165, 257 (2007)PubMedCrossRefGoogle Scholar
  22. 22.
    J. Cai, K.S. Ziemba, G.M. Smith, Y. Jin, J. Biomed. Mater. Res. 83A, 512 (2007)CrossRefGoogle Scholar
  23. 23.
    F.J. Rodríguez, N. Gόmez, G. Perego, X. Navarro, Biomaterials 20, 1489 (1999)PubMedCrossRefGoogle Scholar
  24. 24.
    S. Itoh, K. Takakuda, S. Ichinose, M. Kikuchi, K. Schinomiya, J. Reconstr. Microsurg. 17, 115 (2001)PubMedCrossRefGoogle Scholar
  25. 25.
    T.B. Bini, S. Gao, X. Xu, S. Wang, S. Ramakrishna, K.W. Leong, J. Biomed. Mater. Res. 68, 286 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Ming-Chin Lu
    • 1
  • Yen-Ting Huang
    • 2
  • Jia-Horng Lin
    • 3
  • Chun-Hsu Yao
    • 2
  • Ching-Wen Lou
    • 4
  • Chin-Chuan Tsai
    • 5
  • Yueh-Sheng Chen
    • 2
  1. 1.School of Post Baccalaureate Chinese MedicineChina Medical UniversityTaichungTaiwan
  2. 2.Laboratory of Biomaterials, Graduate Institute of Chinese Medical ScienceChina Medical UniversityTaichungTaiwan
  3. 3.Laboratory of Fiber Application and Manufacturing, Graduated Institute of Textile EngineeringFeng Chia UniversityTaichungTaiwan
  4. 4.Institute of Biomedical Engineering and Material ScienceCentral Taiwan University of Science and TechnologyTaichungTaiwan
  5. 5.Department of Biological Science & TechnologyI-Su UniversityKaohsiungTaiwan

Personalised recommendations