Calcium–phosphate–silicate composite bone cement: self-setting properties and in vitro bioactivity

  • Zhiguang Huan
  • Jiang Chang


In this study, a novel low temperature setting calcium phosphate–silicate cement was obtained by mixing CaHPO4 · 2H2O (DCPD) and Ca3SiO5 (C3S) with 0.75 M sodium phosphate buffers (pH = 7.0) as liquid phase. The self-setting properties of the obtained DCPD/C3S paste with liquid to powder ratio (L/P) of 0.6 ml/g, such as setting times, injectability, degradability and compressive strength were investigated and compared with that of DCPD/CaO cement system. The results indicated that, with the weight ratio of C3S varied from 20% to 40%, the workable DCPD/C3S pastes could set within 20 min, and the hydrated cement showed significantly higher compressive strength (around 34.0 MPa after 24 h) than that of the DCPD/CaO cement system (approximately 10.0 MPa). Furthermore, the in vitro pH value of the cements was investigated by soaking in simulated body fluid (SBF) for 12 h, and the result indicated that the DCPD/C3S did not induce significant increase or decrease of pH value in SBF. Additionally, the composite cement possesses better ability to support and stimulate cell proliferation than the DCPD/CaO cement. With good hydraulic properties, improved biocompatibility and moderate degradability, the novel DCPD/C3S bone cement may be a potential candidate as bone substitute.


Apatite Simulated Body Fluid Calcium Silicate Hydrate Composite Cement Calcium Phosphate Cement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by the National Basic Science Research Program of China (973 Program) (Grant No.: 2005CB522704), and the funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering (Grant No.: KGCX2-YW-207) and Shanghai Institute of Ceramics, Chinese Academy of Sciences (Grant No.: SCX0606).


  1. 1.
    B.R. Constanz, I.C. Ison, M. Fulmer, P.D. Poser, S.T. Smith, Science 267, 1796 (1995). doi: 10.1126/science.7892603 CrossRefADSGoogle Scholar
  2. 2.
    T.A. Schildhauer, A.P. Bennett, T.M. Wright, J.M. Lane, P.F. O’Leary, J. Orthop. Res. 1, 67 (1999). doi: 10.1002/jor.1100170111 CrossRefGoogle Scholar
  3. 3.
    M.D. Vlad, R. Torres, J. Lopez, M. Barraco, J.A. Moreno, E. Fernandez, J. Mater. Sci.: Mater. Med 18, 347 (2007). doi: 10.1007/s10856-006-0699-0 CrossRefGoogle Scholar
  4. 4.
    W.E. Brown, L.C. Chow, US Patent No. 4,518,430 (1985)Google Scholar
  5. 5.
    E.M. Ooms, J.G.C. Wolke, M.T. Heuvel, B. Jeschke, J.A. Jansen, Biomaterials 24, 989 (2003). doi: 10.1016/S0142-9612(02)00438-6 PubMedCrossRefGoogle Scholar
  6. 6.
    W.E. Brown, L.C. Chow, in Cement Research Progress, ed. by P.W. Brown (American Ceramic Society, Westerville, OH, 1986), pp. 352–379Google Scholar
  7. 7.
    M. Bohner, J. Mater. Chem. 17, 3980 (2007). doi: 10.1039/b706411j CrossRefGoogle Scholar
  8. 8.
    H.E. Briak, D. Durand, J. Nurit, S. Munier, B. Pauvert, P. Boudeville, J. Biomed. Mater. Res. B Appl. Biomater. 63, 447 (2002). doi: 10.1002/jbm.10257 CrossRefGoogle Scholar
  9. 9.
    P. Michailesco, M. Kouassi, H.E. Briak, A. Armynot, P. Boudeville, J. Biomed. Mater. Res. B Appl. Biomater. 74, 760 (2005)PubMedGoogle Scholar
  10. 10.
    W.Y. Zhao, J.Y. Wang, W.Y. Zhai, Z. Wang, J. Chang, Biomaterials 26, 6113 (2005). doi: 10.1016/j.biomaterials.2005.04.025 PubMedCrossRefGoogle Scholar
  11. 11.
    S.M. Kenny, M. Buggy, J. Mater. Sci.: Mater. Med 14, 923 (2003). doi: 10.1023/A:1026394530192 CrossRefGoogle Scholar
  12. 12.
    J.S. Schweitzer, R.A. Livingston, C. Rolfs, H.W. Becker, S. Kubsky, Nucl. Instrum. Methods B 207, 80 (2003). doi: 10.1016/S0168-583X(03)00525-1 CrossRefADSGoogle Scholar
  13. 13.
    W.Y. Zhao, J. Chang, Mater. Lett. 58, 2350 (2004). doi: 10.1016/j.matlet.2004.02.045 CrossRefGoogle Scholar
  14. 14.
    I. Khairoun, M.G. Boltong, F.C.M. Driessens, J.A. Planell, J. Mater. Sci.: Mater. Med 9, 425 (1998). doi: 10.1023/A:1008811215655 CrossRefGoogle Scholar
  15. 15.
    T. Kokubo, J. Non-Cryst. Solids 120, 138 (1990). doi: 10.1016/0022-3093(90)90199-V CrossRefADSGoogle Scholar
  16. 16.
    J. Nurit, J. Margerit, A. Terol, P. Boudeville, J. Mater. Sci.: Mater. Med 13, 1007 (1993). doi: 10.1023/A:1020367900773 CrossRefGoogle Scholar
  17. 17.
    T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006). doi: 10.1016/j.biomaterials.2006.01.017 PubMedCrossRefGoogle Scholar
  18. 18.
    E. Fernández, M.D. Vlad, M.M. Gel, J. López, R. Torres, J.V. Cauich, M. Bohner, Biomaterials 26, 3395 (2005). doi: 10.1016/j.biomaterials.2004.09.023 PubMedCrossRefGoogle Scholar
  19. 19.
    ISO/EN 10993-5:1999. Biological evaluation of medical devices-Part 5. Tests for cytotoxicity, in vitro methods: 8.2 tests on extractGoogle Scholar
  20. 20.
    A.H. Cory, T.C. Owen, J.A. Barltrop, J.G. Cory, Cancer Commun. 3, 207 (1991)PubMedGoogle Scholar
  21. 21.
    M. Bohner, G. Baroud, Biomaterials 13, 1553 (2005). doi: 10.1016/j.biomaterials.2004.05.010 CrossRefGoogle Scholar
  22. 22.
    T. Kokubo, M. Kushiyani, Y. Ebisawa, T. Kitsugi, S.K. Kotani, K. Oura, in Bioceramics, ed. by K. Aoki, K. Sawai (Ishiyaku EuroAmerica, Tokyo, 1989), pp. 157–162Google Scholar
  23. 23.
    P. Siriphannon, Y. Kamenshima, A. Yasumori, K. Okada, S. Hayashi, J. Biomed. Mater. Res. 52, 30 (2000). doi:10.1002/1097-4636(200010)52:1<30::AID-JBM5>3.0.CO;2-ZPubMedCrossRefGoogle Scholar
  24. 24.
    G. Lewis, J. Biomed. Mater. Res. B Appl. Biomater. 76, 456 (2006)PubMedGoogle Scholar
  25. 25.
    K. Ishiwaka, K. Asaoka, J. Biomed. Mater. Res 29, 1537 (1995). doi: 10.1002/jbm.820291210 CrossRefGoogle Scholar
  26. 26.
    E. Fernandez, F.J. Gil, S.M. Best, J. Biomed. Mater. Res. 41, 560 (1998). doi:10.1002/(SICI)1097-4636(19980915)41:4<560::AID-JBM7>3.0.CO;2-APubMedCrossRefGoogle Scholar
  27. 27.
    H.H. Xu, F.C. Eichmiller, A.A. Giuseppetti, J. Biomed. Mater. Res. 52, 107 (2000). doi:10.1002/1097-4636(200010)52:1<107::AID-JBM13>3.0.CO;2-0PubMedCrossRefGoogle Scholar
  28. 28.
    X.P. Wang, J.D. Ye, Y.J. Wang, L. Chen, J. Biomed. Mater. Res. B Appl. Biomater. 82, 93 (2007)PubMedGoogle Scholar
  29. 29.
    M. Kobayashi, T. Nakamura, Y. Okada, A. Fukumoto, T. Furukawa, H. Kato, T. Kokubo, T. Kikutani, J. Biomed. Mater. Res. 42, 223 (1998). doi:10.1002/(SICI)1097-4636(199811)42:2<223::AID-JBM7>3.0.CO;2-RPubMedCrossRefGoogle Scholar
  30. 30.
    M. Kobayashi, T. Nakamura, S. Shinzato, W.F. Mousa, K. Nishio, K. Ohsawa, T. Kokubo, T. Kikutani, J. Biomed. Mater. Res. 46, 447 (1999). doi:10.1002/(SICI)1097-4636(19990915)46:4<447::AID-JBM2>3.0.CO;2-PPubMedCrossRefGoogle Scholar
  31. 31.
    A.J. Ambard, L. Mueninghoff, J. Prosthodont. 15, 321 (2006). doi: 10.1111/j.1532-849X.2006.00129.x PubMedCrossRefGoogle Scholar
  32. 32.
    M.A. Harrison, I.F. Rae, General Techniques for Cell Culture (Cambridge University Press, Cambridge, 1997), p. 7Google Scholar
  33. 33.
    I.D. Xynos, A.J. Edgar, L.D. Buttery, L.L. Hench, J.M. Polak, J. Biomed. Mater. Res. 55, 151 (2001). doi:10.1002/1097-4636(200105)55:2<151::AID-JBM1001>3.0.CO;2-DPubMedCrossRefGoogle Scholar
  34. 34.
    L.L. Hench, J.K. West, Life Chem. Rep. 13, 187 (1996)Google Scholar
  35. 35.
    I. Khairoun, M.G. Boltong, F.C. Driessens, Biomaterials 18, 1535 (1997)PubMedGoogle Scholar
  36. 36.
    Y.K. Lee, B.S. Lim, C.W. Kim, J. Oral Rehabil. 30, 418 (2003). doi: 10.1046/j.1365-2842.2003.01061.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Biomaterials and Tissue Engineering Research CenterShanghai Institute of Ceramics, Chinese Academy of SciencesShanghaiPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations