Advertisement

Novel self-assembled amphiphilic poly(ε-caprolactone)-grafted-poly(vinyl alcohol) nanoparticles: hydrophobic and hydrophilic drugs carrier nanoparticles

  • Faheem A. Sheikh
  • Nasser A. M. Barakat
  • Muzafar A. Kanjwal
  • Santosh Aryal
  • Myung Seob Khil
  • Hak-Yong Kim
Article

Abstract

In the present study, we have aimed to produce nanoparticles (NPs) possessing the capability of carrying both of the hydrophobic and hydrophilic drugs and reveal significant release for both drug types. Poly(ε-caprolactone) (PCL) grafted poly(vinyl alcohol) (PVA) copolymer (PCL-g-PVA) has been prepared and shaped in nano-particulate form to be adequate for carrying the drugs. Stannous octoate (Sn(II)Oct2) was used to catalyze PVA and ε-caprolactone monomer to chemically bond. Moreover, this catalyst enhanced side chain polymerization reaction for the utilized ε-caprolactone monomer to form poly(ε-caprolactone) (PCL). The formed PCL was attached as branches with PVA backbone. 1H NMR has confirmed formation of PCL and grafting of PVA by this new polymer. Moreover, the vibration modes in the functional groups of PCL-g-PVA have been detected by FT-IR. The thermal alteration in the grafted polymer was checked by TGA analysis. The successfully synthesized grafted copolymer was able to self-aggregate into NPs by direct dialysis method. The size, morphology and charges associated with the obtained NPs were analyzed by DLS, TEM and ELS, respectively. PCL-g-PVA NPs were investigated as drug carrier models for hydrophobic and hydrophilic anti cancer drugs; paclitaxel and doxorubicin. In vitro drug release experiments were conducted; the loaded NPs reveal continuous and sustained release form for both drugs, up to 20 and 15 days for paclitaxel and doxorubicin, respectively. However, in a case of using pure drugs only, both drugs completely released within 1–2 h. The overall obtained results strongly recommend the use these novel NPs in future drug delivery systems.

Keywords

Paclitaxel Drug Release Dynamic Light Scattering Phosphate Buffer Saline Solution Solution Electrophoretic Light Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work was supported by Korean Research Foundation Grant founded by Korean Government (MOEHRD) (The Center for Health Care Technology, Chonbuk National University, Jeonju 561–756 Republic of Korea).

References

  1. 1.
    T. Kimura, A. Okuno, K. Miyazaki, T. Furuzono, Y. Ohya, T. Ouchi, S. Mutsuo, H. Yoshizawa, Y. Kitamura, T. Fujisato, A. Kishid, Mater. Sci. Eng. C 24, 797 (2004). doi: 10.1016/j.msec.2004.08.046 CrossRefGoogle Scholar
  2. 2.
    C.H. Kim, M.S. Khil, H.Y. Kim, H.U. Lee, K.Y. Jahng, J. Biomed. Mater. Res. B.: Appl. Biomater. 78, 283 (2006)Google Scholar
  3. 3.
    C.R. Nuttelman, D.J. Mortisen, S.M. Henry, K.S. Anseth, J. Biomed. Mater. Res. A 57, 217 (2001). doi :10.1002/1097-4636(200111)57:2<217::AID-JBM1161>3.0.CO;2-ICrossRefGoogle Scholar
  4. 4.
    C.R. Nuttelman, S.M. Henry, K.S. Anseth, Biomaterials 23, 3617 (2002). doi: 10.1016/S0142-9612(02)00093-5 PubMedCrossRefGoogle Scholar
  5. 5.
    M. Qi, Y. Gu, N. Sakata, D. Kim, Y. Shirouzu, C. Yamamoto, A. Hiura, S. Sumi, K. Inoue, Biomaterials 25, 5885 (2004). doi: 10.1016/j.biomaterials.2004.01.050 PubMedCrossRefGoogle Scholar
  6. 6.
    M.K. Lindemann, Encyclopedia of Polymer Science and Engineering, vol. 14 (Wiley, New York, 1971), p. 149Google Scholar
  7. 7.
    A. Breitenbach, T. Kissel, Polymer (Guildf) 39, 3261 (1998). doi: 10.1016/S0032-3861(97)10077-5 CrossRefGoogle Scholar
  8. 8.
    Z. Gan, J.T. Fung, X. Jing, C. Wu, W.K. Kuliche, Polymer (Guildf) 40, 1961 (1999). doi: 10.1016/S0032-3861(98)00414-5 CrossRefGoogle Scholar
  9. 9.
    I.D. Armani, C.S. Liu, J. Micromech. Microeng. 10, 80 (2000). doi: 10.1088/0960-1317/10/1/311 CrossRefADSGoogle Scholar
  10. 10.
    I. Ydens, D. Rutot, P. Degee, J.L. Six, E. Dellacherie, P. Dubois, Macromolecules 33, 6713 (2000). doi: 10.1021/ma0002803 CrossRefGoogle Scholar
  11. 11.
    M.P. Bajgai, S. Aryal, S.R. Bhattarai, K.C. Remant, K.W. Kim, H.Y. Kim, J. Appl. Polym. Sci. 108, 1447 (2008). doi: 10.1002/app.27825 CrossRefGoogle Scholar
  12. 12.
    P. Prabu, A.A. Chaudhari, S. Aryal, N. Dharmaraj, S.Y. Park, W.D. Kim, H.Y. Kim, J. Mater. Sci: Mater. Med. 19, 2157 (2008). doi: 10.1007/s10856-007-3307-z CrossRefGoogle Scholar
  13. 13.
    K. Aoi, H. Aoi, M. Okada, Macromol. Chem. Phys. 203, 1018 (2002). doi :10.1002/1521-3935(20020401)203:7<1018::AID-MACP1018>3.0.CO;2-9CrossRefGoogle Scholar
  14. 14.
    S. Aryal, K.C.R. Bahadur, N. Bhattarai, B.M. Lee, H.Y. Kim, Mater. Chem. Phys. 98, 463 (2006). doi: 10.1016/j.matchemphys.2005.09.082 CrossRefGoogle Scholar
  15. 15.
    K. Kataoka, A. Harada, Y. Nagasaki, Adv. Drug Deliv. Rev. 47, 113 (2001). doi: 10.1016/S0169-409X(00)00124-1 PubMedCrossRefGoogle Scholar
  16. 16.
    A.L. Villemson, P. Couvreur, R. Gref, N.I. Larionova, Polym. Sci. Ser. A 49, 708 (2007). doi: 10.1134/S0965545X07060120 CrossRefGoogle Scholar
  17. 17.
    M. Lee, Y.W. Cho, J.H. Park, H. Chung, S.Y. Jeong, K. Choi, D.H. Moon, S.Y. Kim, I.S. Kim, I.C. Kwon, Colloid Polym. Sci. 284, 506 (2006). doi: 10.1007/s00396-005-1413-3 CrossRefGoogle Scholar
  18. 18.
    J.R.M. Carthy, J.M. Perez, C. Bruckner, R. Weissleder, Nano Lett. 5, 2552 (2005). doi: 10.1021/nl0519229 CrossRefGoogle Scholar
  19. 19.
    K.S. Soppimath, T.M. Aminabhavi, A. Kulkarni, W.E. Rudzinski, J. Control Release 70, 1 (2001). doi: 10.1016/S0168-3659(00)00339-4 PubMedCrossRefGoogle Scholar
  20. 20.
    L. Mu, S.S. Feng, J. Control Release 80, 129 (2002). doi: 10.1016/S0168-3659(02)00025-1 PubMedCrossRefGoogle Scholar
  21. 21.
    R. Savic, L. Luo, A. Eisenberg, D. Maysinger, Science 300, 615 (2003). doi: 10.1126/science.1078192 PubMedCrossRefADSGoogle Scholar
  22. 22.
    G. Gaucher, M.H. Dufresne, V.P. Sant, N. Kang, D. Maysinger, C. Leroux, J. Control Release 109, 169 (2005). doi: 10.1016/j.jconrel.2005.09.034 PubMedCrossRefGoogle Scholar
  23. 23.
    S. Chunhua, G. Shengrong, L. Chengfei, Polym. Degrad Stab. 92, 1891 (2007). doi: 10.1016/j.polymdegradstab.2007.06.012 CrossRefGoogle Scholar
  24. 24.
    I. Brigger, C. Dubernet, P. Couvreur, Adv. Drug Deliv. Rev. 54, 63 (2002). doi: 10.1016/S0169-409X(02)00044-3 CrossRefGoogle Scholar
  25. 25.
    N. Bhattarai, H.Y. Kim, D.I. Cha, D.R. Lee, D.I. Yoo, Eur. Polym. J. 39, 1365 (2003). doi: 10.1016/S0014-3057(02)00389-0 CrossRefGoogle Scholar
  26. 26.
    B.C. Thanoo, M.C. Sunny, A. Jayakrishnan, J. Pharm. Pharmacol. 45, 16 (1993)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Faheem A. Sheikh
    • 1
  • Nasser A. M. Barakat
    • 2
    • 3
  • Muzafar A. Kanjwal
    • 4
  • Santosh Aryal
    • 5
  • Myung Seob Khil
    • 6
  • Hak-Yong Kim
    • 6
  1. 1.Department of Bionano System EngineeringChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.Chemical Engineering Department, Faculty of EngineeringEl-Minia UniversityEl-MiniaEgypt
  3. 3.Center for Healthcare Technology DevelopmentChonbuk National UniversityJeonjuRepublic of Korea
  4. 4.Department of Polymer Nano Science and TechnologyChonbuk National UniversityJeonjuRepublic of Korea
  5. 5.Department of Mechanical EngineeringUniversity of WisconsinMilwaukeeUSA
  6. 6.Department of Textile EngineeringChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations