Advertisement

Glass–ceramic scaffolds containing silica mesophases for bone grafting and drug delivery

  • Chiara Vitale-Brovarone
  • Francesco Baino
  • Marta Miola
  • Renato Mortera
  • Barbara Onida
  • Enrica Verné
Article

Abstract

Glass–ceramic macroporous scaffolds were prepared using glass powders and polyethylene (PE) particles of two different sizes. The starting glass, named as Fa-GC, belongs to the system SiO2–P2O5–CaO–MgO–Na2O–K2O–CaF2 and was synthesized by a traditional melting-quenching route. The glass was ground and sieved to obtain powders of specific size which were mixed with PE particles and then uniaxially pressed in order to obtain crack-free green samples. The compact of powders underwent a thermal treatment to remove the organic phase and to sinter the Fa-GC powders. Fa-GC scaffolds were characterized by means of X-Ray Diffraction, morphological observations, density measurements, image analysis, mechanical tests and in vitro tests. Composite systems were then prepared combining the drug uptake-delivery properties of MCM-41 silica micro/nanospheres with the Fa-GC scaffold. The system was prepared by soaking the scaffold into the MCM-41 synthesis batch. The composite scaffolds were characterized by means of X-Ray Diffraction, morphological observations, mechanical tests and in vitro tests. Ibuprofen was used as model drug for the uptake and delivery analysis of the composite system. In comparison with the MCM-41-free scaffold, both the adsorption capacity and the drug delivery behaviour were deeply affected by the presence of MCM-41 spheres inside the scaffold.

Keywords

Ibuprofen Simulated Body Fluid Bioactive Glass Composite Scaffold Scaffold Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Ministero Italiano dell’Università e della Ricerca (MIUR) (PRIN 2006) and Regione Piemonte (Ricerca Sanitaria Finalizzata) are kindly acknowledged for financial support of this research.

References

  1. 1.
    J.W. Melvin, Fracture mechanics in bone. J. Biomech. Eng. 115, 549–554 (1993). doi: 10.1115/1.2895538 PubMedCrossRefGoogle Scholar
  2. 2.
    W.W. Lu, F. Zhao, K.D.K. Luk, Y.J. Yin, K.M.V. Cheung, G.X. Cheng, K.D. Yao, J.C.Y. Leong, Controllable porosity hydroxyapatite ceramics as spine cage: fabrication and properties evaluation. J. Mater. Sci.: Mater. Med. 14, 1039–1046 (2003). doi: 10.1023/B:JMSM.0000004000.56814.9e CrossRefGoogle Scholar
  3. 3.
    M. Navarro, S. Del Valle, S. Martinez, S. Zappatelli, L. Ambrosio, J. Planell, New macroporous calcium-phosphate glass-ceramic for guided bone regeneration. Biomaterials 25, 4233–4241 (2004). doi: 10.1016/j.biomaterials.2003.11.012 PubMedCrossRefGoogle Scholar
  4. 4.
    E.M. Younger, M.W. Chapman, Morbidity at bone graft donor site. J. Orthop. Trauma 3, 192–195 (1989). doi: 10.1097/00005131-198909000-00002 PubMedCrossRefGoogle Scholar
  5. 5.
    R.G. Boyce, D.M. Toriumi, Considerations in the use of biologic grafts and alloplastic implants in facial plastic and reconstructive surgery. J. Long Term Eff. Med. Implants 2, 199–220 (1992)PubMedGoogle Scholar
  6. 6.
    M.W. Wolf, S.D. Cook, Use of ostoinductive implants in the treatment of bone defects. Med. Prog. Technol. 20, 155–168 (1994)Google Scholar
  7. 7.
    J. Jones, L.L. Hench, Regeneration of trabecular bone using porous ceramics. Curr. Opin. Solid State Mater. Sci. 7, 301–307 (2003). doi: 10.1016/j.cossms.2003.09.012 CrossRefGoogle Scholar
  8. 8.
    R.Z. Legeros, S. Lin, R. Rohanizadeh, D. Mijares, J.P. Legeros, Biphasic calcium phosphate bioceramics: preparation, properties and applications. J. Mater. Sci.: Mater. Med. 14, 201–209 (2003). doi: 10.1023/A:1022872421333 CrossRefGoogle Scholar
  9. 9.
    J.D. Thompson, L.L. Hench, Mechanical properties of bioactive glasses, glass-ceramics and composites. J. Eng. Med. 212, 127–136 (1998). doi: 10.1243/0954411981533908 CrossRefGoogle Scholar
  10. 10.
    P.N. De Aza, Z.B. Luklinska, C. Santos, F. Guitian, S. De Aza, Mechanism of bone-like formation on a bioactive implant in vivo. Biomaterials 24, 1437–1445 (2003). doi: 10.1016/S0142-9612(02)00530-6 PubMedCrossRefGoogle Scholar
  11. 11.
    D. Rokusek, C. Davitt, A. Bandyopadhyay, S. Bose, H.L. Hosick, Interaction of human osteoblasts with bioinert and bioactive ceramic substrates. J. Biomed. Res. 75, 588–594 (2005)Google Scholar
  12. 12.
    M.M. Pereira, A.E. Clark, L.L. Hench, Calcium phosphate formation on sol-gel derived bioactive glasses in vitro. J. Mater. Biomed. Res. 18, 693–698 (1994). doi: 10.1002/jbm.820280606 CrossRefGoogle Scholar
  13. 13.
    L.L. Hench, Bioactive materials: the potential for tissue regeneration. J. Mater. Biomed. Res. 41, 511–518 (1998). doi :10.1002/(SICI)1097-4636(19980915)41:4<511::AID-JBM1>3.0.CO;2-FCrossRefGoogle Scholar
  14. 14.
    J.R. Jones, L.M. Ehrenfried, L.L. Hench, Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27, 964–973 (2006). doi: 10.1016/j.biomaterials.2005.07.017 PubMedCrossRefGoogle Scholar
  15. 15.
    O. Lyckfeldt, J.M. Ferreira, Processing of porous ceramics by starch consolidation. J. Eur. Ceram. Soc. 18, 131–140 (1998). doi: 10.1016/S0955-2219(97)00101-5 CrossRefGoogle Scholar
  16. 16.
    N.L. Porter, R.M. Pilliar, M.D. Grynpas, Fabrication of porous calcium polyphosphate implants by solid freeform fabrication: a study of processing parameters and in vitro degradation characteristics. J. Biomed. Mater. Res. 56, 504–515 (2001). doi :10.1002/1097-4636(20010915)56:4<504::AID-JBM1122>3.0.CO;2-JPubMedCrossRefGoogle Scholar
  17. 17.
    M.H. Prado da Silva, A.F. Lemos, I.R. Gibson, J.M. Ferreira, J.D. Santos, Porous glass reinforced hydroxyapatite materials produced with different organic additives. J. Non-Cryst. Solids 304, 286–292 (2002). doi: 10.1016/S0022-3093(02)01036-0 CrossRefADSGoogle Scholar
  18. 18.
    S. Hong Li, J.R. De Wijn, P. Layrolle, K. De Groot, Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. J. Biomed. Mater. Res. 61, 109–120 (2002). doi: 10.1002/jbm.10163 CrossRefGoogle Scholar
  19. 19.
    C. Vitale-Brovarone, S. Di Nunzio, O. Bretcanu, E. Verné, Macroporous glass-ceramic materials with bioactive properties. J. Mater. Sci.: Mater. Med. 15, 209–217 (2004). doi: 10.1023/B:JMSM.0000015480.49061.e1 CrossRefGoogle Scholar
  20. 20.
    C. Vitale-Brovarone, E. Verné, L. Robiglio, P. Appendino, F. Bassi, G. Martinasso, G. Muzio, R. Canuto, Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomater. 3, 199–208 (2007). doi: 10.1016/j.actbio.2006.07.012 PubMedCrossRefGoogle Scholar
  21. 21.
    J.E. Babensee, J.M. Anderson, L.V. McIntire, A.G. Mikos, Host response to tissue engineered devices. Adv. Drug Deliv. Rev. 33, 111–139 (1998). doi: 10.1016/S0169-409X(98)00023-4 PubMedCrossRefGoogle Scholar
  22. 22.
    R. Cancedda, P. Giannoni, M. Mastrogiacomo, A tissue approach to bone repair in large animal models and in clinical practice. Biomaterials 28, 4240–4250 (2007). doi: 10.1016/j.biomaterials.2007.06.023 PubMedCrossRefGoogle Scholar
  23. 23.
    P. Horcajada, A. Ramila, K. Boulahya, J. Gonzalez-Calbet, M. Vallet-Regi, Bioactivity in ordered mesoporous materials. Solid State Sci. 6, 1295–1300 (2004). doi: 10.1016/j.solidstatesciences.2004.07.026 CrossRefADSGoogle Scholar
  24. 24.
    A. Ramila, B. Munoz, J. Perez-Pariente, M. Vallet-Regí, Mesoporous MCM-41 as drug host system. J. Sol-Gel Sci. Tecn. 26, 1199–1202 (2003)CrossRefGoogle Scholar
  25. 25.
    F. Bonneau, L. Yeung, N. Steunou, C. Gervais, A. Ramila, M. Vallet-Regi, Solid state NMR characterization of encapsulated molecules in mesoporous silica. J. Sol-Gel Sci. 31, 219–223 (2004). doi: 10.1023/B:JSST.0000047991.73840.8b CrossRefGoogle Scholar
  26. 26.
    V. Cauda, S. Fiorilli, B. Onida, E. Verné, C. Vitale-Brovarone, D. Viterbo, G. Croce, M. Milanesio, E. Garrone, SBA-15 ordered mesoporous silica inside a bioactive glass-ceramic scaffold for local drug delivery. J. Mater. Sci. Mater. Med. 19, 3303–3310 (2008)PubMedCrossRefGoogle Scholar
  27. 27.
    C. Vitale-Brovarone, E. Verné, P. Appendino, Macroporous bioactive glass-ceramic scaffolds for tissue engineering. J. Mater. Sci.: Mater. Med. 17, 1069–1078 (2006). doi: 10.1007/s10856-006-0533-8 CrossRefGoogle Scholar
  28. 28.
    R. Mortera, B. Onida, S. Fiorilli, V. Cauda, C. Vitale-Brovarone, F. Baino, E. Verné, E. Garrone, Synthesis of MCM-41 spheres inside bioactive glass-ceramic scaffold. Chem. Eng. J. 137, 54–61 (2008). doi: 10.1016/j.cej.2007.07.094 CrossRefGoogle Scholar
  29. 29.
    M. Grun, K.K. Unger, A. Matsumoto, K. Tsutsumi, Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microp. Mesop. Mater. 27, 207–216 (1999). doi: 10.1016/S1387-1811(98)00255-8 CrossRefGoogle Scholar
  30. 30.
    D. Ladron de Guevara-Fernadez, C.V. Ragel, M. Vallet-Regi, Bioactive glass-polymer materials for controlled release of ibuprofen. Biomaterials 24, 2037–2043 (2003). doi: 10.1016/S0142-9612(03)00279-5 CrossRefGoogle Scholar
  31. 31.
    Y.F. Zhu, L. Jian, Y.S. Li, W.H. Shen, X.P. Dong, Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface. Microp. Mesop. Mater. 85, 75–81 (2005). doi: 10.1016/j.micromeso.2005.06.015 CrossRefGoogle Scholar
  32. 32.
    C. Vitale-Brovarone, M. Miola, C. Balagna, E. Verné, 3D-glass-ceramic scaffolds with antibacterial properties for bone grafting. Chem. Eng. J. 137, 129–136 (2008). doi: 10.1016/j.cej.2007.07.083 CrossRefGoogle Scholar
  33. 33.
    T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006). doi: 10.1016/j.biomaterials.2006.01.017 PubMedCrossRefGoogle Scholar
  34. 34.
    F. Di Renzo, A. Galarneau, P. Trens, F. Fajula. in Handbook of Porous Materials, ed. by F. Schuth, K. Sing, J. Weitkamp (Wiley-VCH, 2002), p. 1311Google Scholar
  35. 35.
    P. Horcajada, A. Ramila, J. Perez-Pariente, M. Vallet-Regi, Influence of pore size of MCM-41 matrices on drug delivery rate. Microp. Mesop. Mater. 68, 105–109 (2004). doi: 10.1016/j.micromeso.2003.12.012 CrossRefGoogle Scholar
  36. 36.
    R. Mortera, S. Fiorilli, E. Garrone, B. Onida, Structural changes of MCM-41 spheres during ibuprofen release to SBF. Stud. Surf. Sci. Catal. 174B, 1001–1004 (2008)CrossRefGoogle Scholar
  37. 37.
    Z. Schwarts, B.D. Boyan, Characterisation of microrough bioactive glasses: surface reactions and osteoblast responses. J. Cell. Biochem. 56, 340–347 (1994). doi: 10.1002/jcb.240560310 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Chiara Vitale-Brovarone
    • 1
  • Francesco Baino
    • 1
  • Marta Miola
    • 1
  • Renato Mortera
    • 1
  • Barbara Onida
    • 1
  • Enrica Verné
    • 1
  1. 1.Materials Science and Chemical Engineering DepartmentPolitecnico di TorinoTorinoItaly

Personalised recommendations