Skip to main content
Log in

Glass–ceramic scaffolds containing silica mesophases for bone grafting and drug delivery

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Glass–ceramic macroporous scaffolds were prepared using glass powders and polyethylene (PE) particles of two different sizes. The starting glass, named as Fa-GC, belongs to the system SiO2–P2O5–CaO–MgO–Na2O–K2O–CaF2 and was synthesized by a traditional melting-quenching route. The glass was ground and sieved to obtain powders of specific size which were mixed with PE particles and then uniaxially pressed in order to obtain crack-free green samples. The compact of powders underwent a thermal treatment to remove the organic phase and to sinter the Fa-GC powders. Fa-GC scaffolds were characterized by means of X-Ray Diffraction, morphological observations, density measurements, image analysis, mechanical tests and in vitro tests. Composite systems were then prepared combining the drug uptake-delivery properties of MCM-41 silica micro/nanospheres with the Fa-GC scaffold. The system was prepared by soaking the scaffold into the MCM-41 synthesis batch. The composite scaffolds were characterized by means of X-Ray Diffraction, morphological observations, mechanical tests and in vitro tests. Ibuprofen was used as model drug for the uptake and delivery analysis of the composite system. In comparison with the MCM-41-free scaffold, both the adsorption capacity and the drug delivery behaviour were deeply affected by the presence of MCM-41 spheres inside the scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.W. Melvin, Fracture mechanics in bone. J. Biomech. Eng. 115, 549–554 (1993). doi:10.1115/1.2895538

    Article  PubMed  CAS  Google Scholar 

  2. W.W. Lu, F. Zhao, K.D.K. Luk, Y.J. Yin, K.M.V. Cheung, G.X. Cheng, K.D. Yao, J.C.Y. Leong, Controllable porosity hydroxyapatite ceramics as spine cage: fabrication and properties evaluation. J. Mater. Sci.: Mater. Med. 14, 1039–1046 (2003). doi:10.1023/B:JMSM.0000004000.56814.9e

    Article  CAS  Google Scholar 

  3. M. Navarro, S. Del Valle, S. Martinez, S. Zappatelli, L. Ambrosio, J. Planell, New macroporous calcium-phosphate glass-ceramic for guided bone regeneration. Biomaterials 25, 4233–4241 (2004). doi:10.1016/j.biomaterials.2003.11.012

    Article  PubMed  CAS  Google Scholar 

  4. E.M. Younger, M.W. Chapman, Morbidity at bone graft donor site. J. Orthop. Trauma 3, 192–195 (1989). doi:10.1097/00005131-198909000-00002

    Article  PubMed  CAS  Google Scholar 

  5. R.G. Boyce, D.M. Toriumi, Considerations in the use of biologic grafts and alloplastic implants in facial plastic and reconstructive surgery. J. Long Term Eff. Med. Implants 2, 199–220 (1992)

    PubMed  CAS  Google Scholar 

  6. M.W. Wolf, S.D. Cook, Use of ostoinductive implants in the treatment of bone defects. Med. Prog. Technol. 20, 155–168 (1994)

    Google Scholar 

  7. J. Jones, L.L. Hench, Regeneration of trabecular bone using porous ceramics. Curr. Opin. Solid State Mater. Sci. 7, 301–307 (2003). doi:10.1016/j.cossms.2003.09.012

    Article  CAS  Google Scholar 

  8. R.Z. Legeros, S. Lin, R. Rohanizadeh, D. Mijares, J.P. Legeros, Biphasic calcium phosphate bioceramics: preparation, properties and applications. J. Mater. Sci.: Mater. Med. 14, 201–209 (2003). doi:10.1023/A:1022872421333

    Article  CAS  Google Scholar 

  9. J.D. Thompson, L.L. Hench, Mechanical properties of bioactive glasses, glass-ceramics and composites. J. Eng. Med. 212, 127–136 (1998). doi:10.1243/0954411981533908

    Article  CAS  Google Scholar 

  10. P.N. De Aza, Z.B. Luklinska, C. Santos, F. Guitian, S. De Aza, Mechanism of bone-like formation on a bioactive implant in vivo. Biomaterials 24, 1437–1445 (2003). doi:10.1016/S0142-9612(02)00530-6

    Article  PubMed  Google Scholar 

  11. D. Rokusek, C. Davitt, A. Bandyopadhyay, S. Bose, H.L. Hosick, Interaction of human osteoblasts with bioinert and bioactive ceramic substrates. J. Biomed. Res. 75, 588–594 (2005)

    Google Scholar 

  12. M.M. Pereira, A.E. Clark, L.L. Hench, Calcium phosphate formation on sol-gel derived bioactive glasses in vitro. J. Mater. Biomed. Res. 18, 693–698 (1994). doi:10.1002/jbm.820280606

    Article  Google Scholar 

  13. L.L. Hench, Bioactive materials: the potential for tissue regeneration. J. Mater. Biomed. Res. 41, 511–518 (1998). doi :10.1002/(SICI)1097-4636(19980915)41:4<511::AID-JBM1>3.0.CO;2-F

    Article  CAS  Google Scholar 

  14. J.R. Jones, L.M. Ehrenfried, L.L. Hench, Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27, 964–973 (2006). doi:10.1016/j.biomaterials.2005.07.017

    Article  PubMed  CAS  Google Scholar 

  15. O. Lyckfeldt, J.M. Ferreira, Processing of porous ceramics by starch consolidation. J. Eur. Ceram. Soc. 18, 131–140 (1998). doi:10.1016/S0955-2219(97)00101-5

    Article  CAS  Google Scholar 

  16. N.L. Porter, R.M. Pilliar, M.D. Grynpas, Fabrication of porous calcium polyphosphate implants by solid freeform fabrication: a study of processing parameters and in vitro degradation characteristics. J. Biomed. Mater. Res. 56, 504–515 (2001). doi :10.1002/1097-4636(20010915)56:4<504::AID-JBM1122>3.0.CO;2-J

    Article  PubMed  CAS  Google Scholar 

  17. M.H. Prado da Silva, A.F. Lemos, I.R. Gibson, J.M. Ferreira, J.D. Santos, Porous glass reinforced hydroxyapatite materials produced with different organic additives. J. Non-Cryst. Solids 304, 286–292 (2002). doi:10.1016/S0022-3093(02)01036-0

    Article  ADS  CAS  Google Scholar 

  18. S. Hong Li, J.R. De Wijn, P. Layrolle, K. De Groot, Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. J. Biomed. Mater. Res. 61, 109–120 (2002). doi:10.1002/jbm.10163

    Article  CAS  Google Scholar 

  19. C. Vitale-Brovarone, S. Di Nunzio, O. Bretcanu, E. Verné, Macroporous glass-ceramic materials with bioactive properties. J. Mater. Sci.: Mater. Med. 15, 209–217 (2004). doi:10.1023/B:JMSM.0000015480.49061.e1

    Article  CAS  Google Scholar 

  20. C. Vitale-Brovarone, E. Verné, L. Robiglio, P. Appendino, F. Bassi, G. Martinasso, G. Muzio, R. Canuto, Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomater. 3, 199–208 (2007). doi:10.1016/j.actbio.2006.07.012

    Article  PubMed  CAS  Google Scholar 

  21. J.E. Babensee, J.M. Anderson, L.V. McIntire, A.G. Mikos, Host response to tissue engineered devices. Adv. Drug Deliv. Rev. 33, 111–139 (1998). doi:10.1016/S0169-409X(98)00023-4

    Article  PubMed  CAS  Google Scholar 

  22. R. Cancedda, P. Giannoni, M. Mastrogiacomo, A tissue approach to bone repair in large animal models and in clinical practice. Biomaterials 28, 4240–4250 (2007). doi:10.1016/j.biomaterials.2007.06.023

    Article  PubMed  CAS  Google Scholar 

  23. P. Horcajada, A. Ramila, K. Boulahya, J. Gonzalez-Calbet, M. Vallet-Regi, Bioactivity in ordered mesoporous materials. Solid State Sci. 6, 1295–1300 (2004). doi:10.1016/j.solidstatesciences.2004.07.026

    Article  CAS  ADS  Google Scholar 

  24. A. Ramila, B. Munoz, J. Perez-Pariente, M. Vallet-Regí, Mesoporous MCM-41 as drug host system. J. Sol-Gel Sci. Tecn. 26, 1199–1202 (2003)

    Article  CAS  Google Scholar 

  25. F. Bonneau, L. Yeung, N. Steunou, C. Gervais, A. Ramila, M. Vallet-Regi, Solid state NMR characterization of encapsulated molecules in mesoporous silica. J. Sol-Gel Sci. 31, 219–223 (2004). doi:10.1023/B:JSST.0000047991.73840.8b

    Article  Google Scholar 

  26. V. Cauda, S. Fiorilli, B. Onida, E. Verné, C. Vitale-Brovarone, D. Viterbo, G. Croce, M. Milanesio, E. Garrone, SBA-15 ordered mesoporous silica inside a bioactive glass-ceramic scaffold for local drug delivery. J. Mater. Sci. Mater. Med. 19, 3303–3310 (2008)

    Article  PubMed  CAS  Google Scholar 

  27. C. Vitale-Brovarone, E. Verné, P. Appendino, Macroporous bioactive glass-ceramic scaffolds for tissue engineering. J. Mater. Sci.: Mater. Med. 17, 1069–1078 (2006). doi:10.1007/s10856-006-0533-8

    Article  CAS  Google Scholar 

  28. R. Mortera, B. Onida, S. Fiorilli, V. Cauda, C. Vitale-Brovarone, F. Baino, E. Verné, E. Garrone, Synthesis of MCM-41 spheres inside bioactive glass-ceramic scaffold. Chem. Eng. J. 137, 54–61 (2008). doi:10.1016/j.cej.2007.07.094

    Article  CAS  Google Scholar 

  29. M. Grun, K.K. Unger, A. Matsumoto, K. Tsutsumi, Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microp. Mesop. Mater. 27, 207–216 (1999). doi:10.1016/S1387-1811(98)00255-8

    Article  CAS  Google Scholar 

  30. D. Ladron de Guevara-Fernadez, C.V. Ragel, M. Vallet-Regi, Bioactive glass-polymer materials for controlled release of ibuprofen. Biomaterials 24, 2037–2043 (2003). doi:10.1016/S0142-9612(03)00279-5

    Article  CAS  Google Scholar 

  31. Y.F. Zhu, L. Jian, Y.S. Li, W.H. Shen, X.P. Dong, Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface. Microp. Mesop. Mater. 85, 75–81 (2005). doi:10.1016/j.micromeso.2005.06.015

    Article  CAS  Google Scholar 

  32. C. Vitale-Brovarone, M. Miola, C. Balagna, E. Verné, 3D-glass-ceramic scaffolds with antibacterial properties for bone grafting. Chem. Eng. J. 137, 129–136 (2008). doi:10.1016/j.cej.2007.07.083

    Article  CAS  Google Scholar 

  33. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27, 2907–2915 (2006). doi:10.1016/j.biomaterials.2006.01.017

    Article  PubMed  CAS  Google Scholar 

  34. F. Di Renzo, A. Galarneau, P. Trens, F. Fajula. in Handbook of Porous Materials, ed. by F. Schuth, K. Sing, J. Weitkamp (Wiley-VCH, 2002), p. 1311

  35. P. Horcajada, A. Ramila, J. Perez-Pariente, M. Vallet-Regi, Influence of pore size of MCM-41 matrices on drug delivery rate. Microp. Mesop. Mater. 68, 105–109 (2004). doi:10.1016/j.micromeso.2003.12.012

    Article  CAS  Google Scholar 

  36. R. Mortera, S. Fiorilli, E. Garrone, B. Onida, Structural changes of MCM-41 spheres during ibuprofen release to SBF. Stud. Surf. Sci. Catal. 174B, 1001–1004 (2008)

    Article  CAS  Google Scholar 

  37. Z. Schwarts, B.D. Boyan, Characterisation of microrough bioactive glasses: surface reactions and osteoblast responses. J. Cell. Biochem. 56, 340–347 (1994). doi:10.1002/jcb.240560310

    Article  Google Scholar 

Download references

Acknowledgements

Ministero Italiano dell’Università e della Ricerca (MIUR) (PRIN 2006) and Regione Piemonte (Ricerca Sanitaria Finalizzata) are kindly acknowledged for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrica Verné.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitale-Brovarone, C., Baino, F., Miola, M. et al. Glass–ceramic scaffolds containing silica mesophases for bone grafting and drug delivery. J Mater Sci: Mater Med 20, 809–820 (2009). https://doi.org/10.1007/s10856-008-3635-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3635-7

Keywords

Navigation