Surface silver-doping of biocompatible glasses to induce antibacterial properties. Part II: plasma sprayed glass-coatings

  • M. Miola
  • S. Ferraris
  • S. Di Nunzio
  • P. F. Robotti
  • G. Bianchi
  • G. Fucale
  • G. Maina
  • M. Cannas
  • S. Gatti
  • A. Massé
  • C. Vitale Brovarone
  • E. Verné


A 57% SiO2, 3% Al2O3, 34% CaO and 6% Na2O glass (SCNA) has been produced in form of powders and deposited by plasma spray on titanium alloy and stainless steel substrates. The obtained coatings have been subjected to a patented ion-exchange treatment to introduce silver ions in the surface inducing an antibacterial behavior. Silver surface-enriched samples have been characterized by means of X-ray diffraction, SEM observation, EDS analysis, in vitro bioactivity tests, leaching tests by GFAAS (graphite furnace atomic adsorption spectroscopy) analyses, cells adhesion and proliferation, and antibacterial tests using Staphylococcus Aureus strain. In vitro tests results showed that the modified samples acquired an antimicrobial action against tested bacteria maintaining unaffected the biocompatibility of the glass. Furthermore the ion-exchange treatment can be successfully applied to glass-coated samples without affecting the properties of the coatings; the simplicity and reproducibility of the method make it suitable for glass or glass-ceramic coatings of different composition in order to produce coated devices for bone healing and/or prostheses, able to reduce bacterial colonization and infections risks.


Plasma Spray Bioactive Glass Glass Coating Linear Thermal Expansion Coefficient Antibacterial Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge INSTM, Eurocoating s.p.a., that partially funded the research activity and Dr. Arturo Sabbioni which has realized plasma spray coatings.


  1. 1.
    H.G. Llinos, R.R. Geoff, Injury 37(2), S3 (2006). doi: 10.1016/j.injury.2006.04.003 CrossRefGoogle Scholar
  2. 2.
    D. Campoccia, L. Montanaro, C.R. Arciola, Biomaterials 27, 2331 (2006). doi: 10.1016/j.biomaterials.2005.11.044 PubMedCrossRefGoogle Scholar
  3. 3.
    L. Rimondini, M. Fini, R. Giardino, J. Appl. Biomat. Biomech. 3, 1 (2005)Google Scholar
  4. 4.
    I. Allan, H. Newman, M. Wilson, Biomaterials 22(12), 1683 (2001). doi: 10.1016/S0142-9612(00)00330-6 PubMedCrossRefGoogle Scholar
  5. 5.
    L.A. Brook, P. Evans, H.A. Foster, M.E. Pemble, A. Steele, D.W. Sheel, H.M. Yates, J. Photochem. Photobiol. A: Chem. 187(1), 53–63 (2007). doi: 10.1016/j.jphotochem.2006.09.014 CrossRefGoogle Scholar
  6. 6.
    W. Chen, Y. Liu, H.S. Courtney, M. Bettenga, C.M. Agrawal, J.D. Bumgardner, J.L. Ong, Biomaterials 27, 32–5512 (2006). doi: 10.1016/j.biomaterials.2006.07.003 Google Scholar
  7. 7.
    Q.L. Feng, J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim, J. Biomed. Mat. Res. 52(4), 662 (2000). doi:10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3CrossRefGoogle Scholar
  8. 8.
    H.J. Klasen, Burns 26, 131 (2000). doi: 10.1016/S0305-4179(99)00116-3 PubMedCrossRefGoogle Scholar
  9. 9.
    J.Y. Maillard, S.P. Denyer, EWMA J. 1, 6 (2006)Google Scholar
  10. 10.
    G. Muller, Y. Winkler, A. Kramer, J. Hosp. Infect. 53(3), 211 (2003). doi: 10.1053/jhin.2002.1369 PubMedCrossRefGoogle Scholar
  11. 11.
    X. Xu, O. Yang, Y. Wang, H. Yu, X. Chen, X. Jing, Eur. Pol. J. 42, 9–2081 (2006). doi: 10.1016/j.eurpolymj.2006.03.032 Google Scholar
  12. 12.
    V. Alt, T. Bechert, P. Steinrücke, M. Wagener, P. Seidel, E. Dingeldein et al., Biomaterials 25, 18–4383 (2004). doi: 10.1016/j.biomaterials.2003.10.078 CrossRefGoogle Scholar
  13. 13.
    A.G. Avent, C.N. Carpenter, J.D. Smith, D.M. Healy, T. Gilchrist, J. Non-Cryst. Solid 328, 31 (2003)CrossRefADSGoogle Scholar
  14. 14.
    J.M. Schierholz, L.J. Lucas, A. Rump, G.J. Pulverer, J. Hosp. Infect. 40, 257 (1998). doi: 10.1016/S0195-6701(98)90301-2 PubMedCrossRefGoogle Scholar
  15. 15.
    J. Hardes, H. Ahrens, C. Gebert, A. Streitbuerger, H. Buerger, M. Erren, A. Gunsel, C. Wedemeyer, G. Saxler, W. Winkelmann, G. Gosheger, Biomaterials 28(18), 2869 (2007)Google Scholar
  16. 16.
    A. Massè, A. Bruno, M. Bosetti, A. Biasibetti, M. Cannas, P. Gallinaro, Appl. Biomater. 53(5), 600 (2000). doi:10.1002/1097-4636(200009)53:5<600::AID-JBM21>3.0.CO;2-DCrossRefGoogle Scholar
  17. 17.
    C. Gabbi, A. Cacchioli, B. Locardi, E. Guadagnino, Biomaterials 16, 515 (1995). doi: 10.1016/0142-9612(95)91123-G PubMedCrossRefGoogle Scholar
  18. 18.
    A. Oliva, A. Salerno, B. Locardi, V. Riccio, F. Della Ragione, P. Iardino, V. Zappia, Biomaterials 19, 1019 (1998). doi: 10.1016/S0142-9612(97)00249-4 PubMedCrossRefGoogle Scholar
  19. 19.
    J.A. Helsen, J. Proost, J. Schrooten, G. Timmermans, E. Brauns, J. Vandertraeten, J. Eur. Cer. Soc. 17, 147 (1997). doi: 10.1016/S0955-2219(96)00176-8 CrossRefGoogle Scholar
  20. 20.
    T.M. Lee, E. Chang, B.C. Wang, C.Y. Yang, Surf. Coat Technol. 79, 170 (1996). doi: 10.1016/0257-8972(95)02463-8 CrossRefGoogle Scholar
  21. 21.
    F.L.S. Carvalho, C.S. Borges, J.R.T. Branco, M.M. Pereira, J. Non-Cryst. Solid. 247, 64 (1999). doi: 10.1016/S0022-3093(99)00033-2 CrossRefADSGoogle Scholar
  22. 22.
    M. Ferraris, P. Rabajoli, L. Paracchini, F.J. Brossa, Am. Ceram. Soc. 79, 6–1515 (1996). doi: 10.1111/j.1151-2916.1996.tb08759.x CrossRefGoogle Scholar
  23. 23.
    E. Verné, M. Ferraris, A. Ventrella, L. Paracchini, A. Krajewski, A. Ravaglioli, J. Eur. Ceram. Soc. 18, 4–363 (1998). doi: 10.1016/S0955-2219(97)00134-9 CrossRefGoogle Scholar
  24. 24.
    E. Verné, M. Ferraris, C. Jana, L. Paracchini, J. Eur. Ceram. Soc. 20, 473 (2000). doi: 10.1016/S0955-2219(99)00181-8 CrossRefGoogle Scholar
  25. 25.
    E. Verné, E. Bona, E. Angelini, F. Rosalbino, P. Appendino, J. Eur. Ceram. Soc. 22, 2315 (2002). doi: 10.1016/S0955-2219(02)00030-4 CrossRefGoogle Scholar
  26. 26.
    E. Verné, M. Miola, C. Vitale Brovarone, M. Cannas, S. Gatti, G. Fucale, G. Maina, A. Massé, S. Di Nunzio, submitted to J. Mat. Sci. Mat. Med.Google Scholar
  27. 27.
    S. Di Nunzio, E. Vernè, Process for the production of silver-containing prosthetic devices. WO 2006/058906Google Scholar
  28. 28.
    E. Vernè, S. Di Nunzio, M. Bosetti, P. Appendino, C. Vitale Brovarone, G. Maina, M. Cannas, Biomaterials 26/25, 5111 (2005). doi: 10.1016/j.biomaterials.2005.01.038 CrossRefGoogle Scholar
  29. 29.
    S. Di Nunzio, C. Vitale Brovarone, S. Spriano, D. Milanese, E. Vernè, V. Bergo, G. Maina, P. Spinelli, J. Eur. Ceram. Soc. 24, 2935 (2004). doi: 10.1016/j.jeurceramsoc.2003.11.010 CrossRefGoogle Scholar
  30. 30.
    T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006). doi: 10.1016/j.biomaterials.2006.01.017 PubMedCrossRefGoogle Scholar
  31. 31.
    NCCLS M2-A9 “Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard – Ninth EditionGoogle Scholar
  32. 32.
    L.L. Hench, J. Am. Ceram. Soc. 81, 1705 (1998)Google Scholar
  33. 33.
    L.L. Hench, J. Am. Ceram. Soc. 74, 1487 (1991). doi: 10.1111/j.1151-2916.1991.tb07132.x CrossRefGoogle Scholar
  34. 34.
    H. Li, K.A. Khor, P. Cheang, Eng. Fract. Mech. 74(12), 1894 (2007). doi: 10.1016/j.engfracmech.2006.06.001 CrossRefGoogle Scholar
  35. 35.
    Y.C. Yang, E. Chang, Thin Solid Films 444(1–2), 260 (2003). doi: 10.1016/S0040-6090(03)00810-1 CrossRefADSGoogle Scholar
  36. 36.
    E. Vernè, S. Ferraris, M. Miola, G. Fucale, G. Maina, G. Martinasso, R.A. Canuto, S. Di Nunzio, C. Vitale Brovarone (2008) Adv. Appl. Ceram. 107(5), 234 (2008)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • M. Miola
    • 1
  • S. Ferraris
    • 1
  • S. Di Nunzio
    • 1
    • 2
  • P. F. Robotti
    • 3
  • G. Bianchi
    • 3
  • G. Fucale
    • 4
  • G. Maina
    • 4
  • M. Cannas
    • 6
  • S. Gatti
    • 6
  • A. Massé
    • 5
    • 7
  • C. Vitale Brovarone
    • 1
  • E. Verné
    • 1
  1. 1.Materials Science and Chemical Engineering DepartmentPolytechnic of TurinTurinItaly
  2. 2.LINCE Lab. c/o Materials Science and Chemical Engineering DepartmentPolitecnico di Torino, INSTM U.d.R. Politecnico di TorinoTorinoItaly
  3. 3.Eurocoating s.p.a - Ciré-PergineTrentoItaly
  4. 4.Chemical, Clinical and Microbiological Analyses DepartmentCTOTorinoItaly
  5. 5.Traumatology Orthopaedics and Occupational Medicine DepartmentUniversity of TurinTurinItaly
  6. 6.Department of Medical Sciences, Human AnatomyUniversity Eastern Piedmont “A. Avogadro”NovaraItaly
  7. 7.Unit of Orthopaedics and Traumatology, Hospital S. Luigi GonzagaUniversity of TorinoTorinoItaly

Personalised recommendations