In vitro gentamicin sustained and controlled release from chitosan cross-linked films

  • Maria G. N. Campos
  • Henry R. Rawls
  • Lucia H. Innocentini-Mei
  • Neera Satsangi


A novel wound dressing film was investigated for controlled and sustained delivery of gentamicin, while covering and protecting the wound. Chitosan was cross-linked with Hexamethylene 1,6-bis (aminocarboxysulfonate) to prepare the wound dressing films. Cross-linking reaction was required to control the water retention and release of encapsulated gentamicin. Cross-linked films swell less and became more hydrophilic than chitosan film itself. However, this behavior was inversely proportional to the degree of cross-linking. In vitro gentamicin release from the cross-linked films, at physiological conditions of pH and temperature, was studied for 2 weeks. The effects of gentamicin initial concentration and cross-linking ratio on the kinetics of gentamicin release were evaluated. Results showed that the diffusion rate was governed by initial concentration of gentamicin and degree of cross-linking, since higher gentamicin initial concentration and degree of cross-linking promoted the slower release, while lower gentamicin initial concentration and degree of cross-linking promoted the faster one.


Chitosan Contact Angle Gentamicin Chitosan Film Hexamethylene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are thankful to the department of Restorative Dentistry, University of Texas Health Science Center at San Antonio, TX, USA and the department of Polymer Technology, School of Chemical Engineering, State University of Campinas, SP, Brazil for providing necessary facilities for this work. The authors also thank CNPq and CAPES for the financial support.


  1. 1.
    M. Virto, P. Frutos, S. Torrado, G. Frutos, Biomaterials 24, 79 (2003). doi: 10.1016/S0142-9612(02)00254-5 PubMedCrossRefGoogle Scholar
  2. 2.
    D. Neut, H. van del Belt, J. van Horn, H. van der Mei, H. Busscher, Biomaterials 24, 1829 (2003). doi: 10.1016/S0142-9612(02)00614-2 PubMedCrossRefGoogle Scholar
  3. 3.
    M. Changez, K. Burugapalli, V. Koul, V. Choudhary, Biomaterials 24, 527 (2003). doi: 10.1016/S0142-9612(02)00364-2 PubMedCrossRefGoogle Scholar
  4. 4.
    A. Lucas-Girot, M.-C. Verdier, O. Tribut, J.-C. Sangleboeuf, H. Allain, H. Oudadesse, J. Biomed. Mater. Res. B Appl. Biomater. 73B, 164–170 (2005). doi: 10.1002/jbm.b.30210 CrossRefGoogle Scholar
  5. 5.
    S.-N. Park, J. Kim, H. Suh, Biomaterials 25, 3689 (2004). doi: 10.1016/j.biomaterials.2003.10.072 PubMedCrossRefGoogle Scholar
  6. 6.
    W.-K. Loke, S.-K. Lau, L. Yong, E. Khor, C. Sum, J. Biomed. Mater. Res. B Appl. Biomater. 53, 8 (2000). doi: 10.1002/(SICI)1097-4636(2000)53:1<8::AID-JBM2>3.0.CO;2-3Google Scholar
  7. 7.
    F.-L. Mi, Y.-B. Wu, S.-S. Shyu, A.-C. Chao, J.-Y. Lai, C.-C. Su, J. Membr. Sci. 212, 237 (2002). doi: 10.1016/S0376-7388(02)00505-7 CrossRefGoogle Scholar
  8. 8.
    E. Denkbas, E. Oztürk, N. Ozdemir, K. Keçeci, C. Agalar, J. Biomat. Appl. 18, 291 (2004)CrossRefGoogle Scholar
  9. 9.
    W. Mass, A. Mass, B. Tighe, Polym. Int. 47, 89 (1998). doi:10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-FCrossRefGoogle Scholar
  10. 10.
    L. Illum, Pharm. Res. 15, 1326 (1998). doi: 10.1023/A:1011929016601 PubMedCrossRefGoogle Scholar
  11. 11.
    J. Berger, M. Reist, J. Mayer, O. Felt, N. Peppas, R. Gurny, Eur. J. Pharm. Biopharm. 57, 19 (2004). doi: 10.1016/S0939-6411(03)00161-9 PubMedCrossRefGoogle Scholar
  12. 12.
    K. Kurita, Polym. Degrad. Stab. 59, 117 (1998). doi: 10.1016/S0141-3910(97)00160-2 CrossRefGoogle Scholar
  13. 13.
    C. Hoemann, Osteoarthr. Cartil. 13, 318 (2005). doi: 10.1016/j.joca.2004.12.001 PubMedCrossRefGoogle Scholar
  14. 14.
    H. Ueno, T. Mori, T. Fujinaga, Adv. Drug Deliv. Rev. 52, 105 (2001). doi: 10.1016/S0169-409X(01)00189-2 PubMedCrossRefGoogle Scholar
  15. 15.
    S. Chen, Y. Wu, F. Mi, Y. Lin, L. Yu, H. Sung, J. Control Release 96, 285 (2004). doi: 10.1016/j.jconrel.2004.02.002 PubMedCrossRefGoogle Scholar
  16. 16.
    Y. Yuan, B. Chesnutt, G. Utturkar, W. Haggard, Y. Yang, J. Ong et al., Carbohydr. Polym. 68, 561 (2007). doi: 10.1016/j.carbpol.2006.10.023 CrossRefGoogle Scholar
  17. 17.
    V. Sinha, A. Singla, S. Wadhawan, R. Kaushik, R. Kumria, K. Bansal, Int. J. Pharm. 274, 1 (2004). doi: 10.1016/j.ijpharm.2003.12.026 PubMedCrossRefGoogle Scholar
  18. 18.
    S. Jameela, T. Kumary, V. Lal, A. Jayakrishnan, J. Control Release 52, 17 (1998). doi: 10.1016/S0168-3659(97)00187-9 PubMedCrossRefGoogle Scholar
  19. 19.
    S. Hirano, R. Yamaguchi, N. Matsuda, O. Miura, Y. Kondo, Agric. Biol. Chem. 41, 1547 (1977)Google Scholar
  20. 20.
    E. Welsh, C. Schauer, S. Qadri, R. Price, Biomacromolecules 3, 1370 (2002). doi: 10.1021/bm025625z PubMedCrossRefGoogle Scholar
  21. 21.
    S. Lin-Gibson, H. Walls, S. Kennedy, E. Welsh, Carbohydr. Polym. 54, 193 (2003). doi: 10.1016/S0144-8617(03)00159-0 CrossRefGoogle Scholar
  22. 22.
    J. Zhang, P. France, A. Radomyselskiy, S. Datta, J. Zhao, W. van Ooij, J. Appl. Polym. Sci. 88, 1473 (2003). doi: 10.1002/app.11831 CrossRefGoogle Scholar
  23. 23.
    P. Frutos, S. Torrado, M. Perez-Lorenzo, G. Frutos, J. Pharm. Biomed. Anal. 21, 1149 (2000). doi: 10.1016/S0731-7085(99)00192-2 PubMedCrossRefGoogle Scholar
  24. 24.
    P. Skundric, A. Medovic, M. Kostic, AUTEX Res. J. 2, 78 (2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Maria G. N. Campos
    • 1
    • 2
  • Henry R. Rawls
    • 1
  • Lucia H. Innocentini-Mei
    • 2
  • Neera Satsangi
    • 1
  1. 1.Department of Restorative Dentistry, Biomaterials Division, Dental SchoolUniversity of Texas Health Science Center at San AntonioSan AntonioUSA
  2. 2.Department of Polymer Technology, School of Chemical EngineeringState University of Campinas UNICAMPCampinasBrazil

Personalised recommendations