Rapid biofabrication of tubular tissue constructs by centrifugal casting in a decellularized natural scaffold with laser-machined micropores

  • Vladimir A. Kasyanov
  • Jason Hodde
  • Michael C. Hiles
  • Carol Eisenberg
  • Leonard Eisenberg
  • Luis E. F. De Castro
  • Iveta Ozolanta
  • Modra Murovska
  • Robert A. Draughn
  • Glenn D. Prestwich
  • Roger R. Markwald
  • Vladimir Mironov


Centrifugal casting allows rapid biofabrication of tubular tissue constructs by suspending living cells in an in situ cross-linkable hydrogel. We hypothesize that introduction of laser-machined micropores into a decellularized natural scaffold will facilitate cell seeding by centrifugal casting and increase hydrogel retention, without compromising the biomechanical properties of the scaffold. Micropores with diameters of 50, 100, and 200 μm were machined at different linear densities in decellularized small intestine submucosa (SIS) planar sheets and tubular SIS scaffolds using an argon laser. The ultimate stress and ultimate strain values for SIS sheets with laser-machined micropores with diameter 50 μm and distance between holes as low as 714 μm were not significantly different from unmachined control SIS specimens. Centrifugal casting of GFP-labeled cells suspended in an in situ cross-linkable hyaluronan-based hydrogel resulted in scaffold recellularization with a high density of viable cells inside the laser-machined micropores. Perfusion tests demonstrated the retention of the cells encapsulated within the HA hydrogel in the microholes. Thus, an SIS scaffold with appropriately sized microholes can be loaded with hydrogel encapsulated cells by centrifugal casting to give a mechanically robust construct that retains the cell-seeded hydrogel, permitting rapid biofabrication of tubular tissue construct in a “bioreactor-free” fashion.


Endothelial Progenitor Cell Vascular Graft Ultimate Stress Small Intestinal Submucosa Ultimate Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by NSF FIBR Grant (EF-0526854). GDP also thanks the NIH (DC004336) and the Utah Centers of Excellence Program for financial support.


  1. 1.
    M.S. Conte, FASEB J. 12, 43 (1998)PubMedMathSciNetGoogle Scholar
  2. 2.
    J.D. Kakisis, C.D. Liapis, C. Breuer, B.E. Sumpio, J. Vasc. Surg. 41, 349 (2005)PubMedCrossRefGoogle Scholar
  3. 3.
    S.L. Dahl, J. Koh, V. Prabhakar, L.E. Niklason, Cell Transplant. 12, 659 (2003)PubMedGoogle Scholar
  4. 4.
    J. Hodde, Tissue Eng. 8, 295 (2002)PubMedCrossRefGoogle Scholar
  5. 5.
    Q. Lu, K. Ganesan, D.T. Simionescu, N.R. Vyavahare, Biomaterials 25, 5227 (2004)PubMedCrossRefGoogle Scholar
  6. 6.
    C.E. Schmidt, J.M. Baier, Biomaterials 21, 2215 (2000)PubMedCrossRefGoogle Scholar
  7. 7.
    G.E. Amiel, M. Komura, O. Shapira, J.J. Yoo, S. Yazdani, J. Berry, S. Kaushal, J. Bischoff, A. Atala, S. Soker, Tissue Eng. 12, 2355 (2006)PubMedCrossRefGoogle Scholar
  8. 8.
    T. Huynh, G. Abraham, J. Murray, K. Brockbank, P.O. Hagen, S. Sullivan, Nat. Biotechnol. 17, 1083 (1999)PubMedCrossRefGoogle Scholar
  9. 9.
    S. Kaushal, G.E. Amiel, K.J. Guleserian, O.M. Shapira, T. Perry, F.W. Sutherland, E. Rabkin, A.M. Moran, F.J. Schoen, A. Atala, S. Soker, J. Bischoff, J.E. Mayer Jr, Nat. Med. 7, 1035 (2001)PubMedCrossRefGoogle Scholar
  10. 10.
    S. Badylak, A. Liang, R. Record, R. Tullius, J. Hodde, Biomaterials 20, 2257 (1999)PubMedCrossRefGoogle Scholar
  11. 11.
    G.C. Lantz, S.F. Badylak, M.C. Hiles, A.C. Coffey, L.A. Geddes, K. Kokini, G.E. Sandusky, R.J. Morff, J. Invest. Surg. 6, 297 (1993)PubMedCrossRefGoogle Scholar
  12. 12.
    G.J. Wilson, D.W. Courtman, P. Klement, J.M. Lee, H. Yeger, Ann. Thorac. Surg. 60, S353 (1995)PubMedCrossRefGoogle Scholar
  13. 13.
    G.J. Wilson, H. Yeger, P. Klement, J.M. Lee, D.W. Courtman, ASAIO Trans. 36, M340 (1990)PubMedGoogle Scholar
  14. 14.
    O.E. Teebken, A. Bader, G. Steinhoff, A. Haverich, Eur. J. Vasc. Endovasc. Surg. 19, 381 (2000)PubMedCrossRefGoogle Scholar
  15. 15.
    A.W. Clowes, T.R. Kirkman, M.A. Reidy, Am. J. Pathol. 123, 220 (1986)PubMedGoogle Scholar
  16. 16.
    H. Bergmeister, P. Boeck, M.T. Kasimir, T. Fleck, F. Fitzal, W. Husinsky, M. Mittlboeck, H.G. Stoehr, U. Losert, E. Wolner, M. Grabenwoeger, J. Biomed. Mater. Res. B. Appl. Biomater. 74, 495 (2005)PubMedGoogle Scholar
  17. 17.
    M. Grabenwoger, F. Fitzal, J. Sider, C. Cseko, H. Bergmeister, H. Schima, W. Husinsky, P. Bock, E. Wolner, Ann. Thorac. Surg. 66, S110 (1998)PubMedCrossRefGoogle Scholar
  18. 18.
    J.I. Rotmans, J.M. Heyligers, H.J. Verhagen, E. Velema, M.M. Nagtegaal, D.P. De Kleijn, F.G. De Groot, E.S. Stroes, G. Pasterkamp, Circulation 112, 12 (2005)PubMedCrossRefGoogle Scholar
  19. 19.
    J.I. Rotmans, J.M. Heyligers, E.S. Stroes, G. Pasterkamp, Can. J. Cardiol. 22, 1113 (2006)PubMedGoogle Scholar
  20. 20.
    P. Roy-Chaudhury, Circulation 112, 3 (2005)PubMedCrossRefGoogle Scholar
  21. 21.
    V. Mironov, V. Kasyanov, X. Zheng Shu, C. Eisenberg, L. Eisenberg, S. Gonda, T. Trusk, R.R. Markwald, G.D. Prestwich, Biomaterials 26, 7628 (2005)PubMedCrossRefGoogle Scholar
  22. 22.
    X.Z. Shu, Y. Liu, Y. Luo, M.C. Roberts, G.D. Prestwich, Biomacromolecules 3, 1304 (2002)PubMedCrossRefGoogle Scholar
  23. 23.
    Sharma MG (1976) J Biomech 293Google Scholar
  24. 24.
    C.A. Eisenberg, R.R. Markwald, Dev. Biol. 191, 167 (1997)PubMedCrossRefGoogle Scholar
  25. 25.
    V. Mironov, V. Kasyanov, K. Mcallister, S. Oliver, J. Sistino, R. Markwald, J. Craniofac. Surg. 14, 340 (2003)PubMedCrossRefGoogle Scholar
  26. 26.
    V. Mironov, V.A. Kasyanov, M.J. Yost, R. Visconti, W. Twal, T. Trusk, X. Wen, I. Ozolanta, A. Kadishs, G.D. Prestwich, L. Terracio, R.R. Markwald, J. Long Term Eff. Med. Implants 16, 111 (2006)PubMedGoogle Scholar
  27. 27.
    M.W. King, R.G. Guidoin, K.R. Gunasekera, C. Gosselin, Med. Prog. Technol. 9, 217 (1983)PubMedGoogle Scholar
  28. 28.
    S.T. Herbert, S.F. Badylak, L.A. Geddes, B. Hillberry, G.C. Lantz, K. Kokini, Ann. Biomed. Eng. 21, 727 (1993)PubMedCrossRefGoogle Scholar
  29. 29.
    M.C. Hiles, S.F. Badylak, L.A. Geddes, K. Kokini, R.J. Morff, J. Biomed. Mater. Res. 27, 139 (1993)PubMedCrossRefGoogle Scholar
  30. 30.
    M.C. Hiles, S.F. Badylak, G.C. Lantz, K. Kokini, L.A. Geddes, R.J. Morff, J. Biomed. Mater. Res. 29, 883 (1995)PubMedCrossRefGoogle Scholar
  31. 31.
    V. Mironov, G.D. Prestwich, G. Forgacs, J. Mater. Chem. 17, 2054 (2007)CrossRefGoogle Scholar
  32. 32.
    G.D. Prestwich, J. Cell. Biochem. 101, 1370 (2007)PubMedCrossRefGoogle Scholar
  33. 33.
    G.D. Prestwich, Y. Liu, B. Yu, X.Z. Shu, A. Scott, Adv. Enzyme Regul. 47, 196 (2007)PubMedCrossRefGoogle Scholar
  34. 34.
    X.Z. Shu, S. Ahmad, Y. Liu, G.D. Prestwich, J. Biomed. Mater. Res. 79, 902 (2006)CrossRefGoogle Scholar
  35. 35.
    Y. Liu, X.Z. Shu, G.D. Prestwich, Tissue Eng. 12, 3405 (2006)PubMedCrossRefGoogle Scholar
  36. 36.
    L. Flynn, G.D. Prestwich, J.L. Semple, K.A. Woodhouse, Biomaterials 28, 3834 (2007)PubMedCrossRefGoogle Scholar
  37. 37.
    R.A. Peattie, A.P. Nayate, M.A. Firpo, J. Shelby, R.J. Fisher, G.D. Prestwich, Biomaterials 25, 2789 (2004)PubMedCrossRefGoogle Scholar
  38. 38.
    R.A. Peattie, E.R. Rieke, E.M. Hewett, R.J. Fisher, X.Z. Shu, G.D. Prestwich, Biomaterials 27, 1868 (2006)PubMedCrossRefGoogle Scholar
  39. 39.
    D.B. Pike, S. Cai, K.R. Pomraning, M.A. Firpo, R.J. Fisher, X.Z. Shu, G.D. Prestwich, R.A. Peattie, Biomaterials 27, 5242 (2006)PubMedCrossRefGoogle Scholar
  40. 40.
    Y. Liu, S. Cai, X.Z. Shu, J. Shelby, G.D. Prestwich, Wound Repair Regen. 15, 245 (2007)PubMedCrossRefGoogle Scholar
  41. 41.
    M.S. Conte, R.P. Choudhury, M. Shirakowa, J.T. Fallon, L.K. Birinyi, R.P. Choudhry, J. Vasc. Surg. 21, 413 (1995)PubMedCrossRefGoogle Scholar
  42. 42.
    L.B. Kleinert, J.B. Hoying, S.K. Williams, Cell Transplant. 5, 475 (1996)PubMedCrossRefGoogle Scholar
  43. 43.
    M.C. Deruiter, R.E. Poelmann, J.C. Vanmunsteren, V. Mironov, R.R. Markwald, A.C. Gittenberger-De Groot, Circ. Res. 80, 444 (1997)PubMedGoogle Scholar
  44. 44.
    Q. Shi, S. Rafii, M.H. Wu, E.S. Wijelath, C. Yu, A. Ishida, Y. Fujita, S. Kothari, R. Mohle, L.R. Sauvage, M.A. Moore, R.F. Storb, W.P. Hammond, Blood 92, 362 (1998)PubMedGoogle Scholar
  45. 45.
    E.T. Yeh, S. Zhang, H.D. Wu, M. Korbling, J.T. Willerson, Z. Estrov, Circulation 108, 2070 (2003)PubMedCrossRefGoogle Scholar
  46. 46.
    Y. Liu, X.Z. Shu, G.D. Prestwich, Fertil. Steril. 87, 940 (2007)PubMedCrossRefGoogle Scholar
  47. 47.
    S. Cai, Y. Liu, X.Z. Shu, G.D. Prestwich, Biomaterials 26, 6054 (2005)PubMedCrossRefGoogle Scholar
  48. 48.
    K. Ghosh, X.D. Ren, X.Z. Shu, G.D. Prestwich, R.A. Clark, Tissue Eng. 12, 601 (2006)PubMedCrossRefGoogle Scholar
  49. 49.
    G.D. Prestwich, X.Z. Shu, Y. Liu, S. Cai, J.F. Walsh, C.W. Hughes, S. Ahmad, K.R. Kirker, B. Yu, R.R. Orlandi, A.H. Park, S.L. Thibeault, S. Duflo, M.E. Smith, Adv. Exp. Med. Biol. 585, 125 (2006)PubMedCrossRefGoogle Scholar
  50. 50.
    X.Z. Shu, K. Ghosh, Y. Liu, F.S. Palumbo, Y. Luo, R.A. Clark, G.D. Prestwich, J. Biomed. Mater. Res. 68, 365 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Vladimir A. Kasyanov
    • 1
    • 2
  • Jason Hodde
    • 3
  • Michael C. Hiles
    • 3
  • Carol Eisenberg
    • 1
  • Leonard Eisenberg
    • 1
  • Luis E. F. De Castro
    • 1
  • Iveta Ozolanta
    • 2
  • Modra Murovska
    • 2
  • Robert A. Draughn
    • 1
  • Glenn D. Prestwich
    • 4
  • Roger R. Markwald
    • 1
  • Vladimir Mironov
    • 1
  1. 1.Medical University of South CarolinaCharlestonUSA
  2. 2.Riga Stradins UniversityRigaLatvia
  3. 3.Cook Biotech IncWest LafayetteUSA
  4. 4.Department of Medicinal Chemistry, Center for Therapeutic BiomaterialsThe University of UtahSalt Lake CityUSA

Personalised recommendations