Antibacterial protection of suture material by chlorhexidine-functionalized polyelectrolyte multilayer films

  • Jean-Claude Harnet
  • Erell Le Guen
  • Vincent Ball
  • Henri Tenenbaum
  • Joelle Ogier
  • Youssef Haikel
  • Constant Vodouhê


The formation of bacterial biofilms on the surface of implanted materials is a critical factor that may lead to chronic microbial infection and tissue necrosis. In the present study we analysed the stability of polyelectrolyte multilayer (ML) films on suture materials and the antibacterial effect obtained with chlorhexidine (CHX)-functionalized films built on different types of suture materials such as silk, polyester and copolymer of glycolide and l-lactide. The comparison of Escherichia coli culture on glass coverslips and glass coverslips with ML and CHX showed at 24 h an inhibition of the bacterial relative luminescence (40.68%, P < 0.5) and at 48 h (99.46%, P < 0.001). In another way, simple soaking of suture material overnight in CHX digluconate 20% without polyelectrolyte films did not at all protect sutures from bacterial colonization but CHX-functionalized polyelectrolyte films, made from poly-l-glutamic acid and poly-l-lysine, inhibited Escherichia coli proliferation.


Triclosan Suture Material Glycolide Bacterial Seeding Polyelectrolyte Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank all of the members of INSERM U-595 for their assistance and advice. This work was, in part, financed by the program “Ingenierie tissulaire” by INSERM-CNRS. C.V. thanks the Faculty of Odontology of Strasbourg for its financial support. E.LG. was supported by a doctoral fellowship of the Ministère de l’Enseignement Supérieur et de la Recherche.


  1. 1.
    P.A. Marshall, G.I. Loeb, M.M. Cowan, M. Fletcher, Response of microbial adhesives and biofilm matrix polymers to chemical treatments as determined by interference reflection microscopy and light section microscopy. Appl. Environ. Microbiol. 55, 2827 (1989)PubMedGoogle Scholar
  2. 2.
    H.C. Jones, I.L. Roth W.M. Saunders III, Electron microscopic study of a slime layer. J. Bacteriol. 99, 316 (1969)Google Scholar
  3. 3.
    M.E. Rupp, G.L. Archer, Coagulase-negative staphylococci: pathogens associated with medical progress. Clin. Infect. Dis. 19, 231 (1994)PubMedGoogle Scholar
  4. 4.
    E. Barth, Q.M. Myrvik, W. Wagner, A.G. Gristina, In vitro and in vivo comparative colonization of Staphylococcus aureus and Staphylococcus epidermidis on orthopaedic implant materials. Biomaterials 10, 325 (1989). doi: 10.1016/0142-9612(89)90073-2 PubMedCrossRefGoogle Scholar
  5. 5.
    G. Harkes, J. Feijen, J. Dankert, Adhesion of Escherichia coli on to a series of poly methacrylates differing in charge and hydrophobicity. Biomaterials 12, 853 (1991). doi: 10.1016/0142-9612(91)90074-K PubMedCrossRefGoogle Scholar
  6. 6.
    H. Akiyama, R. Torigoe, J. Arata, Interaction of Staphylococcus aureus cells and silk threads in vitro and in mouse skin. J. Dermatol. Sci. 6, 247 (1993). doi: 10.1016/0923-1811(93)90046-R PubMedCrossRefGoogle Scholar
  7. 7.
    J.C. Nickel, I. Ruseska, J.B. Wright, J.W. Costerton, Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob. Agents. Chemother. 27, 619 (1985)PubMedGoogle Scholar
  8. 8.
    G.D. Christensen, W.A. Simpson, A.L. Bisno, E.H. Beachey, Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect. Immun. 37, 318 (1982)PubMedGoogle Scholar
  9. 9.
    J.W. Costerton, P.S. Stewart, E.P. Greenberg, Bacterial biofilms: a common cause of persistent infections. Science 284, 1318 (1999). doi: 10.1126/science.284.5418.1318 PubMedCrossRefADSGoogle Scholar
  10. 10.
    P.S. Stewart, J.W. Costerton, Antibiotic resistance of bacteria in biofilms. Lancet 358, 135 (2001). doi: 10.1016/S0140-6736(01)05321-1 PubMedCrossRefGoogle Scholar
  11. 11.
    K.A. Selvig, G.R. Biagiotti, K.N. Leknes, U.M. Wikesjö, Oral tissue reactions to suture materials. Int. J. Periodontics Restorative Dent. 18, 474 (1998)PubMedGoogle Scholar
  12. 12.
    L.H. Silverstein, G.M. Kurtzman, A review of dental suturing for optimal soft-tissue management. Compend. Contin. Educ. Dent. 26, 163 (2005)PubMedGoogle Scholar
  13. 13.
    K.N. Leknes, I.T. Roynstrand, K.A. Selvig, Human gingival tissue reactions to silk and expanded polytetrafluoroethylene sutures. J. Periodontol. 76, 34 (2005). doi: 10.1902/jop.2005.76.1.34 PubMedCrossRefGoogle Scholar
  14. 14.
    M. Yaltirik, K. Dedeoglu, B. Bilgic, M. Koray, H. Ersev, H. Issever et al., Comparison of four different suture materials in soft tissues of rats. Oral Dis. 9, 284 (2003). doi: 10.1034/j.1601-0825.2003.00954.x PubMedCrossRefGoogle Scholar
  15. 15.
    J.L. Burns, B.W. Ramsey, A.L. Smith, Clinical manifestations and treatment of pulmonary infections in cystic fibrosis. Adv. Pediatr. Infect. Dis. 8, 53 (1993)PubMedGoogle Scholar
  16. 16.
    D. Stickler, J. Dolman, S. Rolfe, J. Chawla, Activity of antiseptics against Escherichia coli growing as biofilms on silicone surfaces. Eur. J. Clin. Microbiol. Infect. Dis. 8, 974 (1989). doi: 10.1007/BF01967568 PubMedCrossRefGoogle Scholar
  17. 17.
    C.E. Edmiston, G.R. Seabrook, M.P. Goheen, C.J. Krepel, C.P. Johnson, B.D. Lewis et al., Bacterial adherence to surgical sutures: can antibacterial-coated sutures reduce the risk of microbial infection? J. Am. Coll. Surg. 203, 481 (2006). doi: 10.1016/j.jamcollsurg.2006.06.026 PubMedCrossRefGoogle Scholar
  18. 18.
    A. Gomez-Alonzo, F.J. Garcia-Criado, F.C. Parreno-Manchado, J.E. Garcia-Sanchez, E. Garcia-Sanchez, A. Parreno-Manchado et al., Study of the efficacy of coated Vicryl Plus antibacterial suture (coated polyglactin 910 suture with triclosan) in two animal models of general surgery. J. Infect. 54, 82 (2007). doi: 10.1016/j.jinf.2006.01.008 CrossRefGoogle Scholar
  19. 19.
    G. Decher, Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 29, 1232 (1997). doi: 10.1126/science.277.5330.1232 CrossRefGoogle Scholar
  20. 20.
    X. Arys, P. Fischer, A.M. Jonas, A. Laschewsky, R. Legras, E. Wischerhoff, Ordered polyelectrolyte multilayers. Rules governing layering in organic binary multilayers. J. Am. Chem. Soc. 125, 1859–1865 (2003). doi: 10.1021/ja0283807 PubMedCrossRefGoogle Scholar
  21. 21.
    P.T. Hammond, Recent explorations in electrostatic multilayer thin film assembly. Curr. Opin. Colloid Interface Sci. 4, 430 (1999). doi: 10.1016/S1359-0294(00)00022-4 CrossRefGoogle Scholar
  22. 22.
    Y. Lvov, M. Onda, K. Ariga, T. Kunitake, Ultrathin films of charged polysaccharides assembled alternately with linear polyions. J. Biomater. Sci. Polym. Ed. 9, 345 (1998)PubMedGoogle Scholar
  23. 23.
    C. Vodouhe, M. Schmittbuhl, F. Boulmedais, D. Bagnard, D. Vautier, P. Schaaf et al., Effect of functionalization of multilayered polyelectrolyte films on motoneuron growth. Biomaterials 26, 545 (2005). doi: 10.1016/j.biomaterials.2004.02.057 PubMedCrossRefGoogle Scholar
  24. 24.
    O. Etienne, C. Picart, C. Taddei, Y. Haikel, J.L. Dimarcq, P. Schaaf et al., Multilayer polyelectrolyte films functionalized by insertion of defensin: a new approach to protection of implants from bacterial colonization. Antimicrob. Agents Chemother. 48, 3662 (2004). doi: 10.1128/AAC.48.10.3662-3669.2004 PubMedCrossRefGoogle Scholar
  25. 25.
    G. Ladam, C. Gergely, B. Senger, G. Decher, J.C. Voegel, P. Schaaf et al., Protein interactions with polyelectrolyte multilayers: interactions between human serum albumin and polystyrene sulfonate/polyallylamine multilayers. Biomacromolecules 1, 674 (2000). doi: 10.1021/bm005572q PubMedCrossRefGoogle Scholar
  26. 26.
    Y. Lvov, K. Ariga, I. Ichinose, T. Kunitake, Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J. Am. Chem. Soc. 117, 6117 (1995). doi: 10.1021/ja00127a026 CrossRefGoogle Scholar
  27. 27.
    J.I. Anzai, T. Hoshi, N. Nakamura, Construction of multilayer thin films containing Avidin by a layer-by layer deposition of Avidin and poly(anion)s. Langmuir 16, 6306 (2000). doi: 10.1021/la000353b CrossRefGoogle Scholar
  28. 28.
    N. Jessel, F. Atalar, P. Lavalle, J. Mutterer, G. Decher, P. Schaaf et al., Bioactive coatings based on a polyelectrolyte multilayer architecture functionalized by embedded proteins. Adv. Mater. 15, 692 (2003). doi: 10.1002/adma.200304634 CrossRefGoogle Scholar
  29. 29.
    L. Derbal, H. Lesot, J.C. Voegel, V. Ball, Incorporation of alkaline phosphatase into layer-by-layer polyelectrolyte films on the surface of affi-gel heparin beads: physicochemical characterization and evaluation of the enzyme stability. Biomacromolecules 4, 1255 (2003). doi: 10.1021/bm034070k PubMedCrossRefGoogle Scholar
  30. 30.
    Y. Lvov, G. Decher, G. Sukhorukov, Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(allylamine). Macromolecules 26, 5396 (1993). doi: 10.1021/ma00072a016 CrossRefGoogle Scholar
  31. 31.
    G.B. Sukhorukov, M.M. Montrel, A.I. Petrov, L.I. Shabarchina, B.I. Sukhorukov, Multilayer films containing immobilized nucleic acids. Their structure and possibilities in biosensor applications. Biosens. Bioelectron. 9, 913 (1996). doi: 10.1016/0956-5663(96)89440-1 CrossRefGoogle Scholar
  32. 32.
    R. Pei, X. Cui, X. Yang, E. Wang, Assembly of alternating polycation and DNA multilayer films by electrostatic layer-by-layer adsorption. Biomacromolecules 2, 463 (2001). doi: 10.1021/bm0001289 PubMedCrossRefGoogle Scholar
  33. 33.
    F. Caruso, K. Niikura, D.N. Furlong, Y. Okahata, Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing. Langmuir 13, 3427 (1997). doi: 10.1021/la9608223 CrossRefGoogle Scholar
  34. 34.
    W. Yang, D. Trau, R. Renneberg, N.T. Yu, F. Caruso, Layer-by-layer construction of novel biofunctional fluorescent microparticles for immunoassay applications. J. Colloid Interface Sci. 234, 356 (2001). doi: 10.1006/jcis.2000.7325 PubMedCrossRefGoogle Scholar
  35. 35.
    J. Chluba, J.C. Voegel, G. Decher, P. Erbacher, P. Schaaf, J. Ogier, Peptide hormone covalently bound to polyelectrolytes and embedded into multilayer architectures conserving full biological activity. Biomacromolecules 2, 800 (2001). doi: 10.1021/bm015529i PubMedCrossRefGoogle Scholar
  36. 36.
    D. Vautier, J. Hemmerle, C. Vodouhe, G. Koenig, L. Richert, C. Picart et al., 3-D surface charges modulate protrusive and contractile contacts of chondrosarcoma cells. Cell Motil. Cytoskeleton 56, 147 (2003). doi: 10.1002/cm.10140 PubMedCrossRefGoogle Scholar
  37. 37.
    T. Serizawa, M. Yamaguchi, T. Matsuyama, M. Akashi, Alternating bioactivity of polymeric layer-by-layer assemblies: anti- vs procoagulation of human blood on chitosan and dextran sulphate layers. Biomacromolecules 1, 306 (2000). doi: 10.1021/bm000006g PubMedCrossRefGoogle Scholar
  38. 38.
    F. Boulmedais, B. Frisch, O. Etienne, P. Lavalle, C. Picart, J. Ogier et al., Polyelectrolyte multilayer films with pegylated polypeptides as a new type of anti-microbial protection for biomaterials. Biomaterials 25, 2003 (2004). doi: 10.1016/j.biomaterials.2003.08.039 PubMedCrossRefGoogle Scholar
  39. 39.
    D. Greenwald, S. Shumway, P. Albear, L. Gottlieb, Mechanical comparison of 10 suture materials before and after in vivo incubation. J. Surg. Res. 56, 372 (1994). doi: 10.1006/jsre.1994.1058 PubMedCrossRefGoogle Scholar
  40. 40.
    D. Aderriotis, G.K.B. Sandor, Outcomes of irradiated polyglactin 910 Vicryl Rapide fast-absorbing suture in oral and scalp wounds. J. Can. Dent. Assoc. 65, 345 (1999)PubMedGoogle Scholar
  41. 41.
    R.J. Shaw, T.W. Negus, T.K. Mellor, A prospective clinical evaluation of the longevity of resorbable sutures in oral mucosa. Br. J. Oral Maxillofac. Surg. 34, 252 (1996). doi: 10.1016/S0266-4356(96)90280-6 PubMedCrossRefGoogle Scholar
  42. 42.
    S.V. Bariol, G.D. Stewart, D.A. Tolley, Laparoscopic suturing: effect of instrument handling on suture strength. J. Endourol. 19, 1127 (2005). doi: 10.1089/end.2005.19.1127 PubMedCrossRefGoogle Scholar
  43. 43.
    W.M. Reichert, G.A. Truskey, Total internal reflection fluorescence (TIRF) microscopy. I. Modelling cell contact region fluorescence. J. Cell Sci. 96, 219 (1990)PubMedGoogle Scholar
  44. 44.
    B. Osterberg, B. Blomstedt, Effect of suture materials on bacterial survival in infected wounds: an experimental study. Acta Chir. Scand. 145, 431 (1979)PubMedGoogle Scholar
  45. 45.
    C.C. Chu, D.F. Williams, Effect of physical configuration and chemical structure of suture material on bacterial adherence. Am. J. Surg. 147, 197 (1984). doi: 10.1016/0002-9610(84)90088-6 PubMedCrossRefGoogle Scholar
  46. 46.
    S. Katz, M. Izhar, D. Mirelman, Bacterial adherence to surgical sutures: a possible factors in suture induced infection. Ann. Surg. 194, 35 (1981). doi: 10.1097/00000658-198107000-00007 PubMedCrossRefGoogle Scholar
  47. 47.
    K.N. Leknes, K.A. Selvig, O.E. Boe, U.M.E. Wikesjo, Tissue reactions to sutures in the presence and absence of anti-infective therapy. J. Clin. Periodontol. 32, 130 (2005). doi: 10.1111/j.1600-051X.2005.00647.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jean-Claude Harnet
    • 1
  • Erell Le Guen
    • 2
  • Vincent Ball
    • 2
  • Henri Tenenbaum
    • 1
  • Joelle Ogier
    • 2
  • Youssef Haikel
    • 1
  • Constant Vodouhê
    • 2
  1. 1.Faculté de chirurgie dentaireStrasbourgFrance
  2. 2.INSERM 595StrasbourgFrance

Personalised recommendations