Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics

  • E. Verné
  • O. Bretcanu
  • C. Balagna
  • C. L. Bianchi
  • M. Cannas
  • S. Gatti
  • C. Vitale-Brovarone


The surface reactivity of different sets of glasses and glass-ceramics belonging to the SiO2–P2O5–CaO–MgO–K2O–Na2O system have been investigated. The attention was focused on the role of their composition on the bioactivity kinetics, in terms of pH modifications, silica-gel formation and its evolution toward hydroxycarbonatoapatite, after different times of soaking in simulated body fluid. Glasses and glass ceramics have been characterized by thermal analysis, SEM-EDS observations and phase analysis (XRD). XPS measurements have been carried out on the most representative set of sample in order to evaluate the evolution of the surface species during the growth of silica-gel and hydroxycarbonatoapatite. The response of murine fibroblast 3T3 to the material before and after a conditioning pre-treatment (immersion in SBF) has been investigated on the same set of samples in order to point out the role of the bioactivity mechanism on cell viability. The main differences among the various glasses have been related to the modifier oxides ratio and to the MgO content, which seems to have an influence on the glass stability, both in terms of thermal properties and surface reactivity. The surface characterization and in vitro tests revealed few variations in the reactivity of the different glasses and glass-ceramics in their pristine form. On the contrary, the different surface properties before and after the pre-treatment in SBF seem to play a role on the biocompatibility of both glass and glass-ceramics, due to the different ion release and hydrophilicity of the surfaces, affecting both cell viability and protein adsorption.


Simulated Body Fluid Protein Adsorption Bioactive Glass Glass Ceramic Energy Dispersive Spectrometer Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Ministero Italiano della Ricerca e dell’Università (MIUR) (PRIN 2003, PRIN 2006) is acknowledged for financial support.


  1. 1.
    W. Cao, L.L. Hench, Ceram. Int. 22, 493 (1996). doi: 10.1016/0272-8842(95)00126-3 CrossRefGoogle Scholar
  2. 2.
    L.L. Hench, J. Am. Ceram. Soc. 81(7), 1705 (1998)Google Scholar
  3. 3.
    H. Kim, F. Miyaji, T. Kokubo, J. Am. Ceram. Soc. 79(9), 2405 (1995). doi: 10.1111/j.1151-2916.1995.tb08677.x CrossRefGoogle Scholar
  4. 4.
    T. Kokubo, J. Non-Cryst. Sol. 120, 138 (1990)CrossRefADSGoogle Scholar
  5. 5.
    T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, J. Biomed. Mater. Res. 24, 721 (1990). doi: 10.1002/jbm.820240607 PubMedCrossRefGoogle Scholar
  6. 6.
    L. Hench, J. Am. Ceram. Soc. 74, 1487 (1991). doi: 10.1111/j.1151-2916.1991.tb07132.x CrossRefGoogle Scholar
  7. 7.
    J.M. Oliveira, R.N. Correia, M.H. Fernandes, Biomaterials 16, 849 (1995). doi: 10.1016/0142-9612(95)94146-C PubMedCrossRefGoogle Scholar
  8. 8.
    Y. Ebisawa, T. Kokubo, K. Ohura, T. Yamamuro, J. Mater. Sci. Mater. Med. 1, 239 (1990). doi: 10.1007/BF00701083 CrossRefGoogle Scholar
  9. 9.
    J.M. Oliveira, R.N. Correia, M.H. Fernandes, Biomaterials 23, 371 (2002). doi: 10.1016/S0142-9612(01)00115-6 PubMedCrossRefGoogle Scholar
  10. 10.
    A.J. Salinas, J. Romàn, M. Vallet-Regi, J.M. Oliveira, R.N. Correia, M.H. Fernandes, Biomaterials 21, 251 (2000). doi: 10.1016/S0142-9612(99)00150-7 PubMedCrossRefGoogle Scholar
  11. 11.
    M. Bosetti, M. Cannas, Biomaterials 26, 3873 (2005). doi: 10.1016/j.biomaterials.2004.09.059 PubMedCrossRefGoogle Scholar
  12. 12.
    T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, J. Biomed. Mater. Res. 24, 721 (1990). doi: 10.1002/jbm.820240607 PubMedCrossRefGoogle Scholar
  13. 13.
    P.W. Mcmillan, Glass-ceramics (Academic Press, London, 1979)Google Scholar
  14. 14.
    R.M. Smith, A.E. Martell, R.J. Motekaitis, NIST critical selected stability constants of metal complexes databases, Version 6 (2001)Google Scholar
  15. 15.
    C.D. Wagner, D.E. Passoja, H.A. Six, H.F. Hillery, J.A. Taylor, T.G. Kinisky et al., J. Vac. Sci. Technol. 21(4), 933 (1982). doi: 10.1116/1.571870 CrossRefADSGoogle Scholar
  16. 16.
    G. Cappelletti, C.L. Bianchi, S. Ardizzone, Appl. Surf. Sci. 253, 519 (2006). doi: 10.1016/j.apsusc.2005.12.098 CrossRefADSGoogle Scholar
  17. 17.
    H.B. Lu, C.T. Campbell, D.J. Graham, B.D. Ratner, Anal. Chem. 72(13), 2886–2894 (2000). doi: 10.1021/ac990812h PubMedCrossRefGoogle Scholar
  18. 18.
    Y.W. Gu, K.A. Khor, P. Cheang, Biomaterials 25(18), 4127 (2004). doi: 10.1016/j.biomaterials.2003.11.030 PubMedCrossRefGoogle Scholar
  19. 19.
    N.G. Maroudas, Nature 244, 353 (1973). doi: 10.1038/244353a0 PubMedCrossRefADSGoogle Scholar
  20. 20.
    L. Tang, J.W. Eaton, Am. J. Clin. Pathol. 103(4), 466 (1995)PubMedGoogle Scholar
  21. 21.
    J.L. Bohnert, T.A. Horbett, J. Colloid Interface Sci. 111, 363 (1986)CrossRefGoogle Scholar
  22. 22.
    L. Tang et al., Biomaterials 20(15), 1365 (1999). doi: 10.1016/S0142-9612(99)00034-4 PubMedCrossRefGoogle Scholar
  23. 23.
    L. Tang, J.W. Eaton, Mol. Med. 5(6), 351 (1999)PubMedGoogle Scholar
  24. 24.
    V. Balasubramanian et al., J. Biomed. Mater. Res. 44(3), 253 (1999). doi:10.1002/(SICI)1097-4636(19990305)44:3<253::AID-JBM3>3.0.CO;2-KPubMedCrossRefGoogle Scholar
  25. 25.
    J. Israelachvili, Intermolecular and Surface Forces, 2nd edn. (Academic Press, London, 1992)Google Scholar
  26. 26.
    K.R. Chintalacharuvu, L.U. Vuong, L.A. Loi, J.W. Larrick, S.L. Morrison, Clin. Immunol. 101(1), 21 (2001). doi: 10.1006/clim.2001.5083 PubMedCrossRefGoogle Scholar
  27. 27.
    S. Hisano, M. Matsushita, T. Fujita, Y. Endo, S. Takebayashi, Am. J. Kidney Dis. 38(5), 1082 (2001). doi: 10.1053/ajkd.2001.28611 PubMedCrossRefGoogle Scholar
  28. 28.
    J. Wettero, T. Bengtsson, P. Tengvall, J. Biomed. Mater. Res. 51, 742 (2000). doi:10.1002/1097-4636(20000915)51:4<742::AID-JBM24>3.0.CO;2-DPubMedCrossRefGoogle Scholar
  29. 29.
    C.S. Rinder, H.M. Rinder, K. Johnson, M. Smith, D.L. Lee, J. Tracey et al., Circulation 100, 553 (1999)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • E. Verné
    • 1
  • O. Bretcanu
    • 1
  • C. Balagna
    • 1
  • C. L. Bianchi
    • 2
  • M. Cannas
    • 3
  • S. Gatti
    • 3
  • C. Vitale-Brovarone
    • 1
  1. 1.Materials Science and Chemical Engineering DepartmentPolitecnico di TorinoTorinoItaly
  2. 2.Physical Chemistry & Electrochemistry DepartmentUniversità di MilanoMilanoItaly
  3. 3.Department of Medical Sciences, Human AnatomyUniversity of Eastern PiedmontNovaraItaly

Personalised recommendations