Preparation of thermally stable nanocrystalline hydroxyapatite by hydrothermal method

  • S. Prakash Parthiban
  • K. Elayaraja
  • E. K. Girija
  • Y. Yokogawa
  • R. Kesavamoorthy
  • M. Palanichamy
  • K. Asokan
  • S. Narayana Kalkura


Thermally stable hydroxyapatite (HAp) was synthesized by hydrothermal method in the presence of malic acid. X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), Raman spectroscopy, scanning electron microscopy (SEM), differential thermal analysis (DTA), thermogravimetric analysis (TGA) was done on the synthesized powders. These analyses confirmed the sample to be free from impurities and other phases of calcium phosphates, and were of rhombus morphology along with nanosized particles. IR and Raman analyses indicated the adsorption of malic acid on HAp. Thermal stability of the synthesized HAp was confirmed by DTA and TGA. The synthesized powders were thermally stable upto 1,400°C and showed no phase change. The proposed method might be useful for producing thermally stable HAp which is a necessity for high temperature coating applications.


Malic Acid Simulated Body Fluid Dicalcium Phosphate Dihydrate Stable Upto Synthetic Calcium Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the grant from Department of Science and Technology, New Delhi through Research Project No. SR/SO/HS-05/2005.


  1. 1.
    L.L. Hench, J. Am. Ceram. Soc. 74, 1487 (1991)CrossRefGoogle Scholar
  2. 2.
    M. Vallet-Regi, J.M. Gonsalez-Calbet, Prog. Solid State Chem. 32, 1 (2004)CrossRefGoogle Scholar
  3. 3.
    W. Suchanek, M. Yoshimura, J. Mater. Res. 13, 94 (1998)CrossRefADSGoogle Scholar
  4. 4.
    S.V. Dorozhkin, M. Epple, Angew. Chem. Int. Ed. 41, 3130 (2002)CrossRefGoogle Scholar
  5. 5.
    K. Kandori, A. Fudo, T. Ishikawa, Phys. Chem. Chem. Phys. 2, 2015 (2000)CrossRefGoogle Scholar
  6. 6.
    I.D. Smiciklas, S.K. Milonjic, S. Zec, J. Mater. Sci. 35, 2825 (2000)CrossRefGoogle Scholar
  7. 7.
    J.-P. Caruelle, D. Barritault, V. Jeanbat-Mimaud, S. Cammas-Marion, V. Langlois, P. Guerinn, C. Barbaud, J. Bio. Sci. Polym. Ed. 11, 979 (2000)CrossRefGoogle Scholar
  8. 8.
    T.K. Anee, N. Meenakshi Sundaram, D. Arivuoli, P. Ramasamy, S. Narayana Kalkura, J. Cryst. Growth 285, 380 (2005)Google Scholar
  9. 9.
    Y. Yoshida, B. Van Meerbeek, Y. Nakayama, M. Yoshioka, J. Snauwaert, Y. Abe, P. Lambrechts, G. Vanherle, M. Okazaki, J. Dent. Res. 80, 1565 (2001)CrossRefPubMedGoogle Scholar
  10. 10.
    F. Nagata, Y. Yokogawa, M. Toriyama, Y. Kawamoto, T. Suzuki, K. Nishizawa, J. Ceram. Soc. Jpn. Int. Ed. 103, 69 (1995)Google Scholar
  11. 11.
    R. Gonzalez-Mcquire, J.-Y. Chane-Ching, E. Vignaud, A. Lebugle, S. Mann, J. Mater. Chem. 14, 2277 (2004)CrossRefGoogle Scholar
  12. 12.
    M. Ashok, S. Narayana Kalkura, N. Meenakshi Sundaram, D. Arivuoli, J. Mater. Sci.: Mater. Med. 18, 895 (2007)CrossRefGoogle Scholar
  13. 13.
    A. Tampieri, G. Celotti, S. Sprio, C. Mingazzini, Mater. Chem. Phys. 64, 54 (2000)CrossRefGoogle Scholar
  14. 14.
    JCPDS number 74-0565.Google Scholar
  15. 15.
    B.S. Furnis, A.J. Hannaford, P.W.G. Smith, A.R. Tatchell, Vogel’s Textbook of Practical Organic Chemistry (Longman, UK, ELBS, 1989)Google Scholar
  16. 16.
    P.N. Kumta, C. Sfeir, D.-H. Lee, D. Olton, D. Choi, Acta. Biomater. 1, 65 (2005)CrossRefPubMedGoogle Scholar
  17. 17.
    D. Choi, P.N. Kumta, J. Am. Ceram. Soc. 89, 444 (2006)CrossRefGoogle Scholar
  18. 18.
    A. Rapacz-Kmita, C. Paluszkiewicz, A. Slosarczyk, Z. Paszkiewicz, J. Mol. Struc. 744747, 653 (2005)CrossRefGoogle Scholar
  19. 19.
    S. Sugiyama, T. Yasutomi, T. Moriga, H. Hayashi, J.B. Moffat, J. Sol. State Chem. 142, 319 (1999)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. Prakash Parthiban
    • 1
  • K. Elayaraja
    • 1
  • E. K. Girija
    • 1
  • Y. Yokogawa
    • 2
  • R. Kesavamoorthy
    • 3
  • M. Palanichamy
    • 4
  • K. Asokan
    • 5
  • S. Narayana Kalkura
    • 1
  1. 1.Crystal Growth CentreAnna UniversityChennaiIndia
  2. 2.Department of Intelligent Materials Engineering, Graduate School of EngineeringOsaka City University (OCU)OsakaJapan
  3. 3.Materials Science DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  4. 4.Department of ChemistryAnna UniversityChennaiIndia
  5. 5.Inter-University Accelerator CenterNew DelhiIndia

Personalised recommendations