Journal of Materials Science: Materials in Medicine

, Volume 19, Issue 9, pp 3029–3034 | Cite as

Preparation of hydroxyapatite spheres with an internal cavity as a scaffold for hard tissue regeneration

  • Hae-Hyoung Lee
  • Seok-Jung Hong
  • Chul-Hwan Kim
  • Eun-Cheol Kim
  • Jun-Hyeog Jang
  • Hong-In Shin
  • Hae-Won Kim


Microparticulates are currently regarded as a useful matrix for the delivery of bioactive molecules and tissue cells. Herein, hydroxyapatite (HA) spherical microparticulates with an internal cavity were produced using an oil-in-water emulsion technique. The HA slurry in the organic solvent was formulated into spherical particles in a water bath containing a surfactant. Rapid evaporation of the solvent helped create a cavity within the microparticulates. The microparticulates were heat-treated at 1,200°C to produce bioactive HA particles with a mean size of approximately 363 μm. Osteoblastic cells were observed to spread and grow favorably over the surface as well as within the cavity of the microparticulates. The currently developed HA microparticulates with an internal cavity are considered to be useful as a scaffolding matrix for bone tissue engineering and direct filling skeletal defects.


Tissue Engineering Bone Tissue Engineering Cell Delivery Tissue Engineering Application Internal Cavity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Korea Science and Engineering Foundation (KOSEF) grants funded by the Korea government (MOST) (No. R01-2007-000-20183-0 and M10646020001-06N4602-00110).


  1. 1.
    S. Freiberg, X.X. Zhu, Int. J. Pharm. 282, 1 (2004)CrossRefGoogle Scholar
  2. 2.
    K.J. Pekarek, J.S. Jacob, E. Mathiowitz, Nature 367, 258 (1994)CrossRefGoogle Scholar
  3. 3.
    M. Borden, M. Attawia, Y. Khan, C.T. Laurencin, Biomaterials 23, 551 (2002)CrossRefGoogle Scholar
  4. 4.
    H.J. Gu, H.H. Lee, H.W. Kim, Tissue Eng. 13, 965 (2007)CrossRefGoogle Scholar
  5. 5.
    Q.Q. Qiu, P. Ducheyne, P.S. Ayyaswamy, J. Biomed. Mater. Res. 52, 66 (2000)CrossRefGoogle Scholar
  6. 6.
    A.M. Rokstad, S. Holtan, B. Strand, B. Steinkjer, L. Ryan, B. Kulseng, G. Skjak-Braek, T. Espevik, Cell Transplant. 11, 313 (2002)Google Scholar
  7. 7.
    D. Kato, M. Takeuchi, T. Sakurai, S. Furukawa, H. Mizokami, M. Sakata, C. Hirayama, M. Kunitake, Biomaterials 24, 4253 (2003)CrossRefGoogle Scholar
  8. 8.
    H. Maeda, T. Kasuga, Acta Biomater. 2, 403 (2006)CrossRefGoogle Scholar
  9. 9.
    H.W. Kim, B.H. Yoon, H.E. Kim, J. Mater. Sci. Mater. Med. 16, 1105 (2005)CrossRefGoogle Scholar
  10. 10.
    Q.Q. Qiu, P. Ducheyne, P.S. Ayyaswamy, Biomaterials 20, 989 (1999)CrossRefGoogle Scholar
  11. 11.
    P.W. Brown, B. Constantz, Hydroxyapatite and Related Materials (CRC press, Boca Raton, 1994)Google Scholar
  12. 12.
    W. Paul, C.P. Sharma, J. Biomater. Appl. 17, 253 (2003)CrossRefGoogle Scholar
  13. 13.
    K.A. Al Ruhaimi, Int. J. Oral. Maxillofac Implants. 16, 105 (2001)Google Scholar
  14. 14.
    P.C. Hobar, M. Pantaloni, H.S. Byrd, Clin. Plast. Surg. 27, 557 (2000)Google Scholar
  15. 15.
    J.M. Schmitt, D.C. Buck, S.P. Joh, S.E. Lynch, J.O. Hollinger, J. Periodontol. 68, 1043 (1997)Google Scholar
  16. 16.
    H. Yoshikawa, A. Myoui, J. Artif. Organs. 8, 131 (2005)CrossRefGoogle Scholar
  17. 17.
    Y. Behairy, M. Jasty, Orthop. Clin. North Am. 30, 661 (1999)CrossRefGoogle Scholar
  18. 18.
    C.J. Bae, H.W. Kim, Y.H. Koh, H.E. Kim, J. Mater. Sci. Mater. Med. 17, 517 (2006)CrossRefGoogle Scholar
  19. 19.
    B.G. Santoni, G.E. Pluhar, T. Motta, D.L. Wheeler, Biomed. Mater. Eng. 17, 277 (2007)Google Scholar
  20. 20.
    H.W. Kim, J.C. Knowles, H.E. Kim, J. Mater. Sci. Mater. Med. 16, 189 (2005)CrossRefGoogle Scholar
  21. 21.
    I. Ono, T. Yamashita, H.Y. Jin, Y. Ito, H. Hamada, Y. Akasaka, M. Nakasu, T. Ogawa, K. Jimbow, Biomaterials 25, 4709 (2004)CrossRefGoogle Scholar
  22. 22.
    H.W. Kim, H.E. Kim, J.C. Knowles, Biomaterials 25, 1279 (2004)CrossRefGoogle Scholar
  23. 23.
    M.P. Ferraz, A.Y. Mateus, J.C. Sousa, F.J. Monteiro, J. Biomed. Mater. Res. A 81, 994 (2007)Google Scholar
  24. 24.
    S.P. Victor, T.S. Kumar, J. Mater. Sci. Mater. Med. 19, 283 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Hae-Hyoung Lee
    • 1
    • 2
  • Seok-Jung Hong
    • 1
  • Chul-Hwan Kim
    • 4
  • Eun-Cheol Kim
    • 5
  • Jun-Hyeog Jang
    • 3
  • Hong-In Shin
    • 6
  • Hae-Won Kim
    • 1
    • 2
  1. 1.Department of Biomaterials ScienceSchool of Dentistry, Dankook UniversityCheonanSouth Korea
  2. 2.Institute of Tissue Regeneration Engineering (ITREN)Dankook UniversityCheonanSouth Korea
  3. 3.Department of BiochemistryCollege of Medicine, Inha UniversityIncheonSouth Korea
  4. 4.Department of Oral and Maxillofacial SurgerySchool of Dentistry, Dankook UniversityCheonanSouth Korea
  5. 5.Department of Oral and Maxillofacial PathologySchool of Dentistry, Wonkwang UnversityIksanSouth Korea
  6. 6.Department of Oral Pathology & Institute for Hard tissue and Bio-tooth RegenerationSchool of Dentistry, Kyungpook National UniversityDaeguSouth Korea

Personalised recommendations